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Abstract

This paper studies the diffusion process of two complementary technologies among peo-

ple who are connected through a social network. It characterizes adoption rates over

time for different initial allocations and network structures. In doing so, we provide

some microfoundations for the stochastic formation of consideration sets. We are par-

ticularly interested in the following question: Suppose we want to maximize technology

diffusion and have a limited number of units of each of the two technologies to initially

distribute. How should we allocate these units among people in the social network?
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1 Introduction

There is a large body of work in economics and marketing that studies the adoption process

of a single technology (or good) among people who interact through a social network. A key

question that emerged early in the literature is the problem of how to optimally seed the

technology via the selection of some initial adopters.1 This paper focuses on a variant of this

model that, surprisingly, has received much less attention. It studies the co-diffusion process

of two complementary technologies among people who interact through a social network.

Interestingly, the underlying dynamics between the interacting technologies involves some

rich consumer behavior that calls for a very different theoretical approach and opens new

possibilities for effective seeding strategies to start the market up.2

There are plenty of examples that motivate our model of complements in the presence of

network effects. Think, for instance, in the (possibility of) joint adoption of Internet and an

antivirus program provided by the same firm. It is reasonable to assume that a person would

be more willing to acquire the antivirus program if he has Internet access and vice versa.

Moreover, it is also natural to think that the person would be more interested in, or aware

of, each of the products if more of his friends already have one or the other. Other examples

in the telecommunications industry include wireless voice and data services (Niculescu and

Whang (2012)), personal computers and Internet (Dewan, Ganley, and Kraemer (2010)), and

mobile operators and SMS messaging (Westland, Hao, Xiao, and Shan (2016)). By focusing

on situations that display these two features, we make three interrelated contributions.

First, we build a formal model to study interdependent choices for complementary tech-

nologies based on stochastic consideration sets. We capture complementarities by assuming

that each person′s preferences regarding the two technologies are quasi-supermodular. Intu-

1Aral, Muchnik, and Sundararajan (2013) state that "seeding or network targeting has emerged as the

primary marketing strategy designed to leverage the word of mouth effect".
2Bayus, Kim, and Shocker (2000) explore various issues associated with the market dynamics of multiple,

interacting products.
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itively, this property states that if a person prefers to get one of the technologies when he

has not adopted the other one, then the same has to be true if he acquires the latter. We

model interdependences among people via a network structure using a mean field approach.

At each period of time, each person randomly meets a few people and is more willing to pay

attention to a particular technology if it is popular enough among the people he encounters.

In other words, the popularity of each technology among peers affects his consideration set.

Afterwards, the person decides the combination of technologies to adopt (if any). We char-

acterize the equilibrium points of the dynamic system and describe the diffusion process of

adoption rates for different initial allocations and network structures.

Second, we use this framework to address a question regarding optimal network seeding

that has no counterpart in the case of a single technology. Suppose we have a limited num-

ber of units of each technology to distribute among people with the purpose of maximizing

adoption rates over time. For instance, let us assume we have 10,000 one-month free Inter-

net subscriptions and 20,000 one-month free antivirus trials to distribute. How should we

allocate the two technologies among people? Specifically, should we maximize the number

of people who get at least one of the two technologies, or, instead, we should maximize the

number of people who get both of them together? We show that adoption rates are higher

over time if we maximize the number of technologies that end up in the same hands. In fact,

we show via example that this allocation can markedly dominate (in terms of adoption rates)

an alternative mechanism that distributes twice as many initial technologies among people.

(This result is also crucial to explain the source of ineffi ciency generated by Nash equilibrium

behavior in an extension of the model that we offer at the end of the paper.)

Lastly, we show that (under our initial assumptions) some people might be worse-off

by the allocation that maximizes adoption rates over time. As we mentioned above (for a

fixed number of initial technologies) the allocation that maximizes diffusion is the one that

maximizes the fraction of people who get the two technologies together. The fact that some

people might be worse-off by this policy happens because this allocation also maximizes the
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fraction of people who get none of the two technologies. We then show that everyone is better-

off (on average) if the utility function is supermodular instead of just quasi-supermodular.

We offer three extensions of our initial model: The first two extensions show that the

main results are robust under alternative diffusion processes. These alternative set-ups allow

for memory in choices and a friendship structure that can accommodate homophily. The last

set-up extends the initial monopoly model to the case of two firms, each of which controls

the diffusion of only one technology. We characterize the seeding game and state the precise

sense in which any Nash equilibrium is ineffi cient. This last result builds directly on the main

insights we develop for the monopoly case.

We finally relate our findings to the existing literature. The comparison of the diffusion

process for different initial allocations relies on an association order on multivariate distrib-

utions that has recently received attention in Economics: The increasing and supermodular

(ISPM) stochastic order. This order allows us to compare the expectation of functions that

are both increasing and supermodular. It proves useful in our framework as we show that

the mapping of adoption rates from one period of time to the next can be expressed as the

expectation of a function that is increasing and supermodular. Thus, the mapping of adoption

rates increases with respect to the ISPM order. We also show that the set of all adoption

distributions ordered by the ISPM order is a complete lattice. (From a technical perspective,

this finding is interesting as previous work has documented that the same set of bivariate

distributions ordered by first-order stochastic dominance is not a lattice.3) These two results

lead to a nice characterization of equilibrium points via Tarski′s fixed point theorem. They

also facilitate the comparative statics analysis we perform in the paper.

The ISPM order is strictly weaker than both the standard first-order stochastic dominance

and the stochastic supermodular order. For the case of bivariate distributions, it coincides

3Kamae, Krengel, and O’Brien (1977) offer a counterexample which shows that the set of bivariate Bernoulli

distributions (partially) ordered by first-order stochastic dominance is not a lattice. (See also Echenique

(2003).) We show that the same set, coupled with a different order, has indeed a lattice structure.
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with the upper orthant order and thereby has a simple representation.4 Meyer and Strulovici

(2012, 2015) provide a useful characterization of this association order coupled with many

interesting applications to Economics. Dziewulski and Quah (2014) use the ISPM order to

derive a revealed preference test for production with complementarities.5

This paper is also related to the literature on stochastic consideration sets (or limited atten-

tion mechanisms). Roughly speaking, papers in this literature assume people are boundedly

rational and do not consider all the alternatives at the moment of making a decision. Instead,

each subset of alternatives has some ex-ante probability of ending up as the consideration

set of the person. Once the consideration set is formed (or realized), the person chooses

the alternative that maximizes his utility in that consideration set (see, e.g., Manzini and

Mariotti (2014)). An important, and still open, question in the literature is how the ex-ante

probabilities of the different subsets of alternatives emerge. In our model, there are four pos-

sible consideration sets: the empty one, the consideration set that only includes technology

one, the consideration set that only includes technology two, and a last one that includes

both technologies. We let the probability of paying attention to each of the two technologies

depend on the number of friends that the person observes have adopted it. The probabilities

at the level of each technology generate a probability distribution on the four sub-sets of al-

ternatives. This probability distribution function varies with the choices of peers. In making

this connection we offer a microfoundation for the formation of consideration sets.

Last, but not least, the paper relates to a large and growing literature on diffusion in social

networks. This literature includes, but is not restricted to, Bala and Goyal (1998), Blume

(1993, 1995), Galeotti and Goyal (2009), Golub and Jackson (2010), Jackson and Rogers

(2007), Jackson and Yariv (2007), Vega-Redondo (2007), and Young (2009).6 Many of these

papers have used first- and second-order stochastic dominance to perform comparative static

4The connection of the ISPM order with the upper orthant order has been established by Scarsini (1998).
5The stronger concept of supermodular stochastic order has also been recently used by Amir and Lazzati

(2016), Athey and Levin (2001), and Levin (2001), among others.
6Jackson, Rogers, and Zenou (2016) offer a nice overview of the leading papers.
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analysis of resting and tipping points of the dynamic evolution of adoption rates.7 We extend

their analysis to the case of two complementary technologies: In doing so, we study a problem

of joint allocation of the two technologies among people that has no parallel in the case of the

single technology and use (to address this question) an association order (the ISPM stochastic

order) that has not been used earlier in this literature. In an extension of the model, we also

set up the basis for the study of competition regarding seeding strategies. Chen, Zenou,

and Zhou (2018) characterize the Nash equilibrium for players embedded in a social network

that choose the level of two interdependent activities. They show that previous results for

quadratic payoffs aggregate nicely to multiple actions. Though slightly related to our work,

the question we address and the method we use are rather different from theirs.

From a business perspective, the importance of complementarities in technology diffusion

has already been highlighted in the marketing literature. Bayus, Kim, and Shocker (2000)

review part of this literature, most of which builds on variants of the canonical "Bass model"

(Bass (1969)). As far as we are concerned, the question of how to optimally allocate the two

technologies among people in the social network to maximize diffusion has not been formally

studied.8

The rest of the paper is as follows. Section 2 describes the model and the diffusion process.

Section 3 presents the main results. Section 4 studies three extensions of the initial model

and Section 5 concludes. The Appendix contains all proofs in the paper.

7See, for example, Jackson and Rogers (2007).
8Graham, Imbens, and Ridder (2014) study econometric methods for measuring the average output effect

of reallocating an indivisible input across production units in the presence of complementarities.
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2 The Model

2.1 Preferences, Network, and Limited Attention

A large population of agents form a social network. We study the diffusion process of two

complementary technologies, 1 and 2, among people in the network.

The population is described by a distribution of types H(n) for n = 1, 2, ..., N with∑N
n=1H(n) = 1. As we explain next, each type in our model incorporates three dimensions:

a utility function that captures the preferences of the person over the two technologies; the

popularity of the person within the network; and a limited attention mechanism that connects

the choice set of each person with the adoption rates of his friends or peers.

In particular, a type n person has associated a utility function Un (x1, x2) for (x1, x2) ∈

{0, 1}×{0, 1}, where xi = 1 means that the person gets technology i = 1, 2 and xi = 0 means

he does not get it. We restrict attention to the class of quasi-supermodular (Q-SPM) utility

functions that, for completeness, we define next.

Definition (Q-SPM) For each (x′1, x
′
2) ∈ {(0, 1) , (1, 0)} and (x′′1, x

′′
2) ∈ {(0, 1) , (1, 0)} with

(x′1, x
′
2) 6= (x′′1, x

′′
2), we have that

Un (x′1, x
′
2) ≥ (>)Un (0, 0) =⇒ Un (1, 1) ≥ (>)Un (x′′1, x

′′
2) .

Q-SPM captures the notion of complementarities between the two technologies.9 In words,

it states that if a person prefers to get one of the two technologies when he has not adopted

the other one, then the same has to be true if he acquires the latter. Related to this concept

is the (stronger) notion of supermodular (SPM) utility functions.

Definition (SPM) Un (1, 1) + Un (0, 0) ≥ Un (0, 1) + Un (1, 0) .

The next example illustrates these two definitions.

9See Topkis (1998) for a nice overview of this class of functions and its role in optimization.
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Example 1 Let the utility function of a type n person be as follows

Un (x1, x2) = (ν1n − p1)x1 + (ν2n − p2)x2 + ∆nx1x2

where p1 and p2 are the prices of technologies 1 and 2, respectively. We often refer to ν1n and

ν2n as the stand-alone values of each technology. The term ∆n is the interaction effect among

the technologies. In this specification, the utility is SPM (and thus Q-SPM) if ∆n ≥ 0.

This quasilinear specification of the utility function has been used in many papers to

capture preferences for complementary goods. For instance, Fox and Lazzati (2017) show

how to recover this type of utility from consumption data exploiting price variation. �

The example of Internet subscriptions and the antivirus software might naturally fit our

definition of complements. Along the analysis we will also assume preferences are strict. That

is, we let Un (x′1, x
′
2) 6= Un (x′′1, x

′′
2) for all (x′1, x

′
2) 6= (x′′1, x

′′
2).

To describe the social network we use a "mean field" approach. That is, we assume the

population is large enough so that the effect of all the other individuals on any given person

is approximated by an average effect. A type n person randomly meets dn people in each

period of time and observes their technology choices (i.e., we model a directed network).

These people are random draws from the distribution of types in the population.10 Roughly

speaking, dn captures the popularity of the person within the network.

The probability of paying attention to a particular technology increases if the person

encounters more people adopting it. Let S1n and S2n be the total number of people (out of

the dn people he crossed paths with) that the person observes have adopted technologies 1 and

2, respectively. Formally, the probability that the person pays attention to technologies 1 and

2, are π1n (S1n) and π2n (S2n), respectively, with π1n : [0, dn]→ [0, 1] and π2n : [0, dn]→ [0, 1] .

We assume that π1n and π2n are both increasing functions. These probabilities capture the

10In Sub-Section 4.2 we extend this model to the case where each person that a type n person meets is

a random draw from a distribution of types that might be different from the distribution of types in the

population. This extension allow us to introduce, among other things, homophily into the model – i.e., a

situation in which each person interacts more often with similar people.
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limited attention mechanism in our model. At each time, the consideration set Γn (i.e., the

subset of technologies he pays attention to) is distributed as follows

Γn =



Γ0n = {0} × {0} with Pr (Γ0n) = [1− π1n (S1n)] [1− π2n (S2n)]

Γ1n = {0, 1} × {0} with Pr (Γ1n) = π1n (S1n) [1− π2n (S2n)]

Γ2n = {0} × {0, 1} with Pr (Γ2n) = [1− π1n (S1n)]π2n (S2n)

Γ12n = {0, 1} × {0, 1} with Pr (Γ12n) = π1n (S1n) π2n (S2n)

.

As in Demuynck and Seel (2018), the formation of consideration sets starts at the individual

good (or technology) level rather than at the bundle level. This modeling approach captures

the idea that the person needs to see a given technology used by his peers to pay attention

to it. In specific contexts, it would be reasonable to assume that, upon observing his peers

using one technology, the person puts more effort in looking for related objects. In terms

of our initial example, it could be the case that a person who observes his friends using a

specific Internet subscription, also looks for related products, and comes across the antivirus

program. Due to the complementary nature of the two technologies in our model, this other

approach would likely facilitate diffusion.

The next example illustrates our last concept.

Example 2 The specification of consideration sets we just described includes, as a particular

case, a simple threshold model. Specifically, it allows the possibility that

Γn =



Γ0n = {0} × {0} if S1n < k1n and S2n < k2n

Γ1n = {0, 1} × {0} if S1n ≥ k1n and S2n < k2n

Γ2n = {0} × {0, 1} if S1n < k1n and S2n ≥ k2n
Γ12n = {0, 1} × {0, 1} if S1n ≥ k1n and S2n ≥ k2n

where k1n and k2n are the corresponding cutoffs for considering each particular technology.

In this case, π1n (S1n) = 1 (S1n ≥ k1n) and π2n (S2n) = 1 (S2n ≥ k2n) are indicator functions.

Here, the person pays attention to a particular technology if, and only if, the technology is

popular enough among his friends or peers. �
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We finally assume the person selects the most preferred option among the ones he is

actually considering. Formally, the optimal choice of the person is given by

BR•n = arg maxx1,x2 {Un (x1, x2) : x1, x2 ∈ Γ•n}

for • = 0, 1, 2, 12. Since consideration sets are (ex-ante) stochastic, the current adoption rates

induce a distribution of choices that evolves over time.

Let us finally remark that this model allows for almost unrestricted heterogeneity across

people. In particular, people might differ regarding preferences for the technologies, number

of people they meet, and the shape of the probabilities that define their consideration sets.

The model also allows for an arbitrary pattern of association between the distribution of

preferences, degree links, and consideration sets in the population. We only assume, for

tractability, that the set of types is finite.

2.2 Co-Diffusion Process

We consider a diffusion process governed by best-reply dynamics in discrete time. Initially, at

time 0, the two technologies are allocated in the population according to the joint distribution

function P0 described by

P000 ≥ 0, P010 ≥ 0, P001 ≥ 0, P011 ≥ 0, and P000 + P010 + P001 + P011 = 1

where P000, P
0
10, P

0
01, and P

0
11 are the fraction of people who have no technology, only technol-

ogy 1, only technology 2, and both of them, respectively. Bivariate Bernoulli distributions can

also be characterized by three parameters: Two parameters that define the marginal distrib-

utions and a third parameter that establishes the dependence between the Bernoulli marginal

distributions. Let P01 = P010+ P011 and P
0
2 = P001+ P011 be the total fraction of people who have

each technology at time 0. In words, P01 and P
0
2 characterize the marginal distributions of P

0.

We find it convenient to describe the joint distribution P0 via the alternative specification P01,

P02, and P
0
11 with

1 ≥ P01 ≥ 0, 1 ≥ P02 ≥ 0, and min
{
P01,P

0
2

}
≥ P011 ≥ max

{
0,P01 + P02 − 1

}
.
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The timing of the model is as follows. At period of time t > 0, each person randomly

meets a few people and observes how many of them have adopted each of the two technologies

at time t− 1. These observations affect the attention he pays to each of the two technologies,

determining his consideration set. Then, the person decides what technologies to acquire

(if any) according to his best-reply function. We next describe the evolution of technology

adoption rates over time induced by this model. (Note that, in this model, the current

distribution of consideration sets depends on the past distribution of consideration sets only

through consumption choices. Sub-section 4.1 presents a variant of this initial model in which

the current distribution of consideration sets depends directly on both the past distribution

of consideration sets and consumption choices.11)

Let
(
xt−11i , x

t−1
2i

)
∈ {0, 1} × {0, 1} with i = 1, 2, ..., dn be the adoption decisions of the

people that a type n person encounters. Each
(
xt−11i , x

t−1
2i

)
is an independent random draw

from the adoption distribution Pt−1. For instance, the probability of meeting a person that

has adopted the two technologies,
(
xt−11i = 1, xt−12i = 1

)
, is Pt−111 . Let S

t−1
1n =

∑dn
i=1 x

t−1
1i and

St−12n =
∑dn

i=1 x
t−1
2i be the total number of people, among the ones that the person meets, who

have adopted technologies 1 and 2, respectively. The distribution of consideration sets for

type n people at period of time t is as follows

Pr
(
Γt0n | Pt−1

)
= E

{[
1− π1n

(
St−11n

)] [
1− π2n

(
St−12n

)]}
Pr
(
Γt1n | Pt−1

)
= E

{
π1n

(
St−11n

) [
1− π2n

(
St−12n

)]}
Pr
(
Γt2n | Pt−1

)
= E

{[
1− π1n

(
St−11n

)]
π2n

(
St−12n

)}
Pr
(
Γt12n | Pt−1

)
= E

{
π1n

(
St−11n

)
π2n

(
St−12n

)}
where E is the expectation operator over the random vector

(
St−11n , S

t−1
2n

)
. Since type n people

have associated a best-reply function for each consideration set, the distribution of consider-

ation sets (coupled with our large population assumption) induces a distribution of optimal

11Under this alternative specification each person′s consideration set increases over time. We thank Bruno

Strulovici for suggesting this possibility.
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choices at period of time t, Ptn, given by(
Pt1n,P

t
2n

)
= BR1n Pr

(
Γt1n | Pt−1

)
+ BR2n Pr

(
Γt2n | Pt−1

)
+ BR12n Pr

(
Γt12n | Pt−1

)
Pt11n = 1 (BR12n = (1, 1)) Pr

(
Γt12n | Pt−1

)
where 1(·) is the standard indicator function. Adding up across all types, the distribution of

technology adoption at period of time t is given by

Pt1 =
∑N

n=1
Pt1nH (n) , Pt2 =

∑N

n=1
Pt2nH (n) , and Pt11 =

∑N

n=1
Pt11nH (n) .

This model does not have closed form solution except for extremely simple representations

of utility functions and network structures. (We will use these simple representations later

to illustrate some of our results.) Nevertheless, as we show below, we can still evaluate the

diffusion process of technology adoption Pt for different initial allocations and address its

implications for optimal seeding strategies and people welfare.

3 Main Results

3.1 Equilibrium Structure

The results in this section are easier to follow if we express the diffusion process we de-

scribed above using a specific matrix form. To this end, let Ptn =
(
Pt1n, P

t
2n, P

t
11n

)′
, Pt =(

Pt1, P
t
2, P

t
11

)′
, 11 = (1, 0)′, and 12 = (0, 1)′. In addition, let us define, for each type n, the

next mapping

Ptn =


BR1n11 0 (BR12n − BR1n) 11

0 BR2n12 (BR12n − BR2n) 12

0 0 1 (BR12n = (1, 1))




Pr
(
Γt1n ∪ Γt12n | Pt−1

)
Pr
(
Γt2n ∪ Γt12n | Pt−1

)
Pr
(
Γt12n | Pt−1

)
 (1)

where the probabilities over the union of consideration sets are given by

Pr
(
Γt1n ∪ Γt12n | Pt−1

)
= E

{
π1n

(
St−11n

)}
Pr
(
Γt2n ∪ Γt12n | Pt−1

)
= E

{
π2n

(
St−12n

)}
Pr
(
Γt12n | Pt−1

)
= E

{
π1n

(
St−11n

)
π2n

(
St−12n

)}
.

(2)
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These probabilities represent (given the large population assumption) the fraction of type n

people who consider technology 1, technology 2, and both of them, respectively, at period of

time t given the adoption rates at time t − 1. The diffusion process in Section 2.2 is just a

weighted average of Ptn across types. That is,

Pt = M
(
Pt−1

)
=
∑N

n=1
PtnH (n) . (3)

Let us finally define the set of all bivariate Bernoulli distributions P = (P1,P2,P11) as

P = {P : P1 ∈ [0, 1] ,P2 ∈ [0, 1] , and P11 ∈ [max {0,P1 + P2 − 1} ,min {P1,P2}]} .

It follows that, by construction, the diffusion process M is a mapping from the set P into itself

(i.e., M: P → P). This section shows that the set of fixed points of M in (3) is non-empty

and has a nice structure. This result builds on two lemmas that we discuss first.

The proof of existence of equilibrium points and the comparative statics analysis for the

diffusion of a single technology have used first and second-order stochastic dominance (see,

e.g., Jackson and Yariv (2007)). Our analysis of the case of two technologies relies on a

stochastic order on multivariate distributions that is called Upper Orthant (UO) stochastic

order. We specify this order next for the case of bivariate Bernoulli distributions P and P.

(See M
..
uller and Stoyan (2002) for a fuller description of the UO stochastic order.)

Definition (UO order) We say P ≥uo P if P1 ≥ P1, P2 ≥ P2, and P11 ≥ P11.

According to the UO order, a probability distribution is larger than another one if it has

higher probabilities for all upper orthant sets. In the case of bivariate Bernoulli distributions,

the UO order coincides with the increasing and supermodular (ISPM) stochastic order. In

turn, this order is weaker than the standard first-order stochastic dominance, which requires

higher probabilities for all upper level sets. It is also weaker than the supermodular stochastic

order, which requires the same marginals and higher probabilities of upper orthant sets.

Figure 1 (below) provides a graphical representation of these statements.
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Figure 1: Stochastic Orders

Each two-by-two square in Figure 1 represents the domain of probability distribution

P, with 00, 10, 01, and 11 indicating no technology, only technology 1, only technology 2,

and both of them, respectively. The disposition of these events in each two-by-two square

is as in the two-by-two square located on the upper left corner. (Naturally, in terms of the

probabilities of these events, we must have P00 ≥ 0, P10 ≥ 0, P01 ≥ 0, P11 ≥ 0, and P00+ P10+

P01+ P11 = 1.) The first row in Figure 1 captures the UO stochastic order (UO order), the

second row captures the first-order stochastic dominance (FOSD), and the last one refers to

the supermodular order (SPM order). In each row, a given distribution increases (according

to the corresponding order) when it has (weakly) higher probabilities for all the events shaded

in dark grey and equal probabilities of the events shaded in light grey. It follows immediately

from Figure 1 that the FOSD and the SPM order are more demanding than the UO order.

For instance, the first three dark grey areas are identical for the UO order and the FOSD, but

the latter also requires P10+P01+P11 to increase (i.e., P00 to go down). In addition, the grey

areas coincide for the UO order and the SPM order, but the latter requires the same marginals

P01 = P010+ P011 and P
0
2 = P001+ P011 instead of just weakly higher marginal probabilities.
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The next lemma states that the set of all bivariate Bernoulli distributions ordered by the

UO order is a complete lattice.

Lemma 1 P (partially) ordered by the UO order is a complete lattice.

Remark Kamae, Krengel, and O’Brien (1977) offer a counterexample which shows that P

(partially) ordered by first-order stochastic dominance is not a lattice (see also Echenique

(2003)). Interestingly, we show that the same set of distributions, coupled with a different

order, has indeed a lattice structure.

To offer a sketch of proof of Lemma 1, note that P is a proper subset of R3. In addition,

for bivariate Bernoulli distributions characterized by the triplet P = (P1,P2,P11), the UO

order coincides with the standard coordinatewise order in R3.12 Thus, completeness follows

as P is a compact subset of R3. Showing that P is a lattice takes a few more steps. Given

P′ ∈ P and P′′ ∈ P, denote by infP (P′,P′′) and supP (P′,P′′) the infimum and supremum of

P′ and P′′ in P. We use inf (P′,P′′) and sup (P′,P′′) for the infimum and supremum of P′ and

P′′ in R3. We show in the appendix that infP (P′,P′′) = inf (P′,P′′) and

supP (P′,P′′) = (max {P′1,P′′1} ,max {P′2,P′′2} ,max {max {P′1,P′′1}+ max {P′2,P′′2} − 1,P′11,P
′′
11}) .

That is, the infimum of P′ and P′′ in P is simply the coordinatewise infimum of P′ and P′′ in

R3. For this part of the proof we show that inf (P′,P′′) ∈ P.

Alternatively, the supremum of P′ and P′′ in P corrects sup (P′,P′′) up to make sure that

the third term (P11) is above its lower bound (P11 ≥ P1+ P2 − 1). This correction works

as any other upper bound for P′ and P′′ would require higher marginals (P1 and P2), and

these higher marginals would push the lower bound for the third term even higher. The next

example shows that this adjustment is indeed needed.

12Let (ai)
n
i=1 ∈ Rn and (bi)

n
i=1 ∈ Rn be two vectors in Rn. The standard coordinatewise order in Rn states

that (ai)
n
i=1 ≥ (bi)

n
i=1 if ai ≥ bi for all i = 1, ..., n.
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Example 3 Let P′ = (0.8, 0.2, 0.1) and P′′ = (0.2, 0.8, 0.2). Note that P′ ∈ P and P′′ ∈ P .

We have that inf (P′,P′′) = (0.2, 0.2, 0.1) is in P. Thus, infP (P′,P′′) = (0.2, 0.2, 0.1). On the

other hand, sup (P′,P′′) = (0.8, 0.8, 0.2) is not in P because 0.2 � 0.8 + 0.8− 1. In this case,

supP (P′,P′′) = (0.8, 0.8, 0.6) . �

The following lemma states that technology adoption rates increase with respect to the

UO stochastic order when the initial adoption rates increase regarding the same order.

Lemma 2 Mapping M: P → P is monotone increasing (in the UO order).

We provide a sketch of proof of Lemma 2 and connect our result with the ISPM stochastic

order. The proof of Lemma 2 (in the appendix) relies on three intermediate results. Let

P
t−1 ≥uo Pt−1. In the first two intermediate results, we show that the three probabilities in

(2) are higher when the consideration sets are generated by P
t−1
as compared to Pt−1. That is,

higher adoption distributions induce higher distributions of consideration sets (where higher

is with respect to the UO order). (From a technical perspective, we show that the sum of d

random draws from two bivariate Bernoulli distributions that are ordered regarding the UO

order, preserve the same ordering.)

The third intermediate result shows that when we restrict attention to Q-SPM utility

functions, the following is true: BR12n ≥ BR1n+ BR2n. As a consequence, all terms in the

3× 3 matrix of Ptn in expression (1) are (weakly) positive for each n = 1, 2, ..., N.

These three intermediate results together imply that the probabilities Pt1n, P
t
2n, and P

t
11n

generated by P
t−1

are larger than the ones generated by Pt−1. Finally, note that

Pt1 =
∑N

n=1
Pt1nH (n) , Pt2 =

∑N

n=1
Pt2nH (n) , and Pt11 =

∑N

n=1
Pt11nH (n) .

Thus, the claim in the lemma follows because Pt1, P
t
2, and P

t
11 are weighted averages of P

t
1n,

Pt2n, and P
t
11n across types n = 1, 2, ..., N.

Interestingly, there is an alternative way of proving Lemma 2 that exploits the equivalence

between the UO and the ISPM orders for the case of bivariate distributions established by
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Scarsini (1998). This result adds to the uses of the ISPM order in Economics that have been

documented by Meyer and Strulovici (2012, 2015).

Connection of Lemma 2 with the ISPM Stochastic Order: Let P
t−1 ≥uo Pt−1. Recall

that Pt1 =
∑N

n=1P
t
1nH(n), Pt2 =

∑N
n=1P

t
2nH(n), and Pt11 =

∑N
n=1P

t
11nH(n), with

(
Pt1n,P

t
2n

)
= BR1n Pr

(
Γt1n | Pt−1

)
+ BR2n Pr

(
Γt2n | Pt−1

)
+ BR12n Pr

(
Γt12n | Pt−1

)
Pt11n = 1 (BR12n = (1, 1)) Pr

(
Γt12n | Pt−1

)
.

Let us define a partial order on the subindices of BR•n and Γ•n as follows: 12 ≥ 1, 12 ≥ 2, 2

≥ 0, and 1 ≥ 0. (We let 1 and 2 be unordered.) When preferences are Q-SPM, we get that

BR12n ≥ BR1n+ BR2n. Also, BR0n = (0, 0). It follows that

BR12n + BR0n ≥ BR1n + BR2n.

That is, BR•n is SPM in •. In addition, BR12n ≥ BR1n, BR12n ≥ BR2n, BR1n ≥ BR0n,

and BR2n ≥ BR0n. Thus, BR•n is also increasing in •. It follows that vector
(
Pt1n,P

t
2n

)
is the expectation of an increasing and supermodular function. As we mentioned earlier,

Pr
(
Γt1n ∪ Γt12n | Pt−1

)
, Pr

(
Γt2n ∪ Γt12n | Pt−1

)
and Pr

(
Γt12n | Pt−1

)
are higher when the con-

sideration sets are generated by P
t−1

as compared to Pt−1. Thus, Pr
(

Γtn | P
t−1
)
dominates

Pr
(
Γtn | Pt−1

)
with respect to the UO stochastic order. In the case of bivariate distributions,

the UO order coincides with the ISPM stochastic order. As the ISPM stochastic order allows

us to compare the expectation of functions that are increasing and supermodular, we get that(
Pt1n,P

t
2n

)
is higher when it is generated by P

t−1
as compared to Pt−1.13 The fact that Pt11n

is also higher follows by simple inspection. The result then follows as Pt1, P
t
2, and P

t
11 are

weighted averages of Pt1n, P
t
2n, and P

t
11n across types n = 1, 2, ..., N. �

We now use Lemmas 1 and 2 to characterize the set of fixed points of mapping M.

13Note that BR•n: Γ•n → {0, 1} × {0, 1}. Though the main characterization of the ISPM stochastic

order involves comparing the expectation of real valued functions that are increasing and supermodular, the

characterization easily extends to this case.
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Theorem 3 The set of fixed points of M is a non-empty complete lattice.

As we anticipated, Theorem 3 states that the set of fixed points of mapping M has a nice

structure. In particular, this set has a largest and a smallest element that, in our model,

correspond to the largest and the smallest resting points in terms of diffusion rates. Its proof

uses Lemmas 1 and 2 to show the main result via Tarski′s fixed point theorem.

Note that if π1n (0) = 0 and π2n (0) = 0, then P characterized by P1 = P2 = P11 = 0

(i.e., P00 = 1) is always a fixed point. This corresponds to a situation in which people do

not pay any attention to a particular technology unless they see other people using it. This

observation highlights the relevance of seeding strategies to start the market up! The next

example illustrates the main ideas in this section and motivates the one that follows.

Example 4 Suppose there is only one type of person (to avoid using subindex n) with a

utility function specified as follows

U (0, 0) = 10, U (1, 0) = 5, U (0, 1) = 6, and U (1, 1) = 15.

This function is SPM (and thus Q-SPM). Moreover, BR1 = (0, 0), BR2 = (0, 0), and BR12 =

(1, 1). In addition, let us assume d = 1, π1 (S1) = 1 (S1 ≥ 1), and π2 (S2) = 1 (S2 ≥ 1). (This

limited attention mechanism is like the one in Example 2 but with k1 = k2 = 1.) Under this

specification, the distribution of consideration sets in period of time t for a choice distribution

Pt−1 at t− 1 is

Pr
(
Γt1 ∪ Γt12 | Pt−1

)
= Pt−11 , Pr

(
Γt2 ∪ Γt12 | Pt−1

)
= Pt−12 , and Pr

(
Γt12 | Pt−1

)
= Pt−111 .

Thus, mapping M takes the form of

Pt = M
(
Pt−1

)
=


0 0 1

0 0 1

0 0 1



Pt−11

Pt−12

Pt−111

 .

It follows that the set of fixed points is given by

{P ∈ P : P1 = P2 = P11} .
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As Theorem 3 states, this set is indeed a lattice. In particular, the largest fixed point is P1 =

P2 = P11 = 1. The smallest fixed point is P1 = P2 = P11 = 0 (i.e., P00 = 1). Moreover, the

latter distribution is reached for any initial allocation P0 that involves P011 = 0. �

3.2 Increasing Co-Diffusion and Optimal Seeding Strategy

By construction, each fixed point of M in (3) is a resting point of Pt for some P0. The results

in this section compare the diffusion process over time and the location of the resting points

for different initial allocations of the two technologies and network structures.

The first proposition is as follows.

Proposition 4 If P
0 ≥uo P 0, then P

t ≥uo P t for all t > 0. If, in addition, P
t
and P t

converge weakly to P and P , respectively, then P ≥uo P .

Remark In particular, if P
0

= (1, 1, 1) and P0 = (0, 0, 0), then P
t
and Pt converge to the

largest and the smallest fixed points of M, respectively.

The first claim in the proposition follows by applying the result of Lemma 2 t times. It

states that the diffusion process is higher at each period of time if we start with a higher initial

allocation, where higher is with respect to the UO order. The second claim follows from the

previous one and the fact that the UO order is closed under weak convergence. Interestingly,

this result could be used to construct an empirical test of complementarities among the two

technologies. The reason is that, if the preferences of people for the two technologies were

instead independent, then the main matrix in the diffusion process of Eq. (1) in Sub-Section

3.1 would be diagonal. In turn, this would imply that, if P
0 ≥uo P0 holds with P

0

1 > P01

and P
0

2 = P02 (that is, the firm only increases the initial allocation of technology 1), then the

steady state equilibrium would display P1 ≥ P1 and P2 = P2. (In the model of complements,

Proposition 4 allows for P2 ≥ P2.) This argument is similar to the idea (in a static model)

of using variation in the price of one of the two goods to check for complementarities in
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preferences via variation in the units acquired of the other good (see, e.g., Athey and Stern

(1998), and the literature therein).

From an economic perspective, Proposition 4 has important implications for marketing

strategies, as we show next. (It is also crucial to explain the source of ineffi ciency in the

seeding game we cover in Sub-Section 4.3.)

Optimal Seeding Strategy for Diffusion of Complements: Suppose we want to allocate

a limited number of units of each technology, captured by P01 and P
0
2, among people at period

of time 0. We want to do so with the purpose of maximizing the adoption rates over time.

Given Proposition 4 we should distribute the initial technologies maximizing the chance that

each person gets both technologies together. Recall that, for fixed marginals, we have that

P011 ∈
[
max

{
0,P01 + P02 − 1

}
,min

{
P01,P

0
2

}]
Thus, the optimal allocation involves setting P011 = min

{
P01,P

0
2

}
.

Note that, by definition,

P01 + P02 − P011 + P000 = 1.

Thus, by selecting P011 as large as possible, we are also increasing the fraction of people who

receive none of the technologies, P000. This observation highlights the difference between the

UO order and the first-order stochastic dominance we explained earlier. It also anticipates

our finding regarding the effect of maximal diffusion on people welfare: it might hurt some

people in the population. �

The next example illustrates the practical importance of the optimal seeding strategy to

maximize technology diffusion.

Example 4 (continued) We keep the same model we described earlier. Thus, mapping M

takes the form of

Pt = M
(
Pt−1

)
=
(
Pt−111 ,P

t−1
11 ,P

t−1
11

)
.
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Let us consider an initial allocation P01 = 1/2, P02 = 1/2, and P011 = 0. That is, we give

technology 1 to half of the population and technology 2 to the other half. Given our previous

characterization,

Pt1 = 0, Pt2 = 0, and Pt11 = 0 for all t ≥ 1.

That is, from period of time 1 the market collapses for the two technologies. Let us consider

next distributing half as many technologies, but let us allocate them together. That is,

P01 = 1/4, P02 = 1/4, and P011 = 1/4. It follows that

Pt1 = 1/4, Pt2 = 1/4, and Pt11 = 1/4 for all t ≥ 1.

Thus, while the first allocation distributes twice as many units of the two technologies among

people, the second one generates much larger adoption rates over time. �

We finally evaluate the diffusion process of technology adoption for different network

structures. To this end, let d = (dn)Nn=1 and π1 (·) , π2 (·) = (π1n (·) , π2n (·))Nn=1 be partially

ordered by the natural product order and product order on functions (i.e., f (·) ≥ g (·) if

f (x) ≥ g (x) for each x), respectively. The next result states that technology diffusion

increases with respect to the UO order when each person interacts with more people or

when the likelihood of considering each technology increases. It extends to the case of two

technologies a similar finding in the single technology diffusion model; while our result relies

on the UO order, the latter uses first-order stochastic dominance (see, e.g., Proposition 3 in

Jackson and Yariv (2007)).

Proposition 5 For a given P 0, let P
t
and P t be generated by d, π1 (·) , π2 (·) and d, π1 (·) , π2 (·),

respectively, with d, π1 (·) , π2 (·) ≥ d, π1 (·) , π2 (·). Thus, P t ≥uo P t for all t > 0. If, in addi-

tion, P
t
and P t converge weakly to P and P , respectively, then P ≥uo P .

In particular, the smallest and the largest fixed points of M generated by d, π1 (·) , π2 (·) are

higher than the ones generated by d, π1 (·) , π2 (·) .
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3.3 Increasing Co-Diffusion and Consumer Welfare

We now turn attention to the impact of the diffusion process on people welfare. In particular,

we want to learn whether people are better-off with the initial allocation that maximizes

technology diffusion. Recall that (for fixed marginals) the initial allocation that maximizes

diffusion is the one that maximizes the fraction of people who get the two technologies to-

gether. Recall also that, by definition,

P1 + P2 − P11 + P00 = 1.

Thus, as we mentioned earlier, keeping P1 and P2 fixed, the allocation that maximizes diffusion

also increases the fraction of people who get none of the two technologies. We first show (via

example) that this possibility can lead to situations in which some people are indeed worse-off

with the initial allocation that maximizes diffusion. We then show that this does not happen

if utilities are SPM instead of just Q-SPM.

To elaborate on this point let V•n = Un (BR•n), for • = 0, 1, 2, 12, be the indirect utility

for a type n person under different consideration sets. The expected indirect utility of this

type of person in period of time t can be expressed as follows

E
(
Vn | Pt−1

)
= V0n + (V1n −V0n) Pr

(
Γt1n ∪ Γt12n | Pt−1

)
+ (V2n −V0n) Pr

(
Γt2n ∪ Γt12n | Pt−1

)
+ (V12n +V0n −V1n −V2n) Pr

(
Γt12n | Pt−1

)
. (4)

The next example shows that, without extra assumptions, a higher initial allocation (in terms

of the UO order) can indeed decrease the expected indirect utility of certain type of people.

Example 5 Suppose there is only one type of person with a utility function specified as

follows

U (0, 0) = 0, U (1, 0) = 10, U (0, 1) = 15, and U (1, 1) = 20.

Note that this utility is Q-SPM (but not SPM). In addition, BR1 = (1, 0), BR2 = (0, 1),

and BR12 = (1, 1). Let us also assume d = 1, π1 (S1) = 1 (S1 ≥ 1), and π2 (S2) = 1 (S2 ≥ 1).

22



Under this specification, as in Example 4, we have that

Pr
(
Γt1 ∪ Γt12 | Pt−1

)
= Pt−11 , Pr

(
Γt2 ∪ Γt12 | Pt−1

)
= Pt−12 , and Pr

(
Γt12 | Pt−1

)
= Pt−111 .

Thus, mapping M takes the form of

Pt = M
(
Pt−1

)
=


1 0 0

0 1 0

0 0 1



Pt−11

Pt−12

Pt−111

 .

It follows that the set of fixed points of M is the whole P. Moreover, for any P0,

E
(
V | Pt−1

)
= 10P01 + 15P02 − 5P011 for all t ≥ 1.

Since E
(
V | Pt−1

)
decreases in P011, a higher initial allocation (in terms of the UO order)

decreases the expected indirect utility of each person for any t ≥ 1. �

We finally show that the expected indirect utility of a given type of people increases with

technology diffusion if its corresponding utility is SPM instead of just Q-SPM. This result

is important as it provides precise conditions under which the preferences of both the firm

and the consumers are aligned regarding the initial allocation strategy. We will invoke this

proposition later to state a similar claim for the seeding game we study in Sub-Section 4.3.

Proposition 6 Assume that, for some n ∈ {1, 2, ..., N}, Un is SPM. If P
0 ≥uo P 0 then

E
(
Vn | P

t−1
)
≥ E

(
Vn | P t−1) for all t > 0. If, in addition, P

t
and P t converge weakly to

P and P , respectively, then E
(
Vn | P

)
≥ E (Vn | P ) .

The proof of Proposition 6 is as follows. We explained earlier that the three probabilities

in expression (4) increase in Pt−1. In addition, by the optimality principle, V1n ≥ V0n and

V2n ≥ V0n. The claim follows as we show (in the appendix) that if the utility is SPM, then

the corresponding indirect utility satisfies

V12n +V0n −V1n −V2n ≥ 0.

This last part is the one that can fail, as Example 5 shows, if the utility is just Q-SPM.
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4 Some Extensions of the Model

4.1 Allowing for Memory

So far, we studied a model in the spirit of the limited attention mechanisms. In particular,

we assumed that, at each period of time, each person fully revises his consideration set based

on other people′s choices. In doing so, the model allows for the possibility that a person

who is currently considering the two technologies (Γ = Γ12), switches to only considering

technology 2 in the next period (Γ = Γ2), as technology 1 is no longer popular among

his peers. A similar idea appears in models of Bayesian learning without recall (see, e.g.,

Amin Rahimian and Jadbabaie (2017)). Though this model captures interesting possibilities,

alternative specifications might also be attractive. This sub-section considers one of them.

In particular, we study a model in which, if a person considers (or becomes aware of) a

technology at some point in time, then that technology is part of his consideration sets in all

subsequent periods. As we next show, our main results remain valid under this alternative

process.

The co-diffusion process in this section is as the one in Section 2.2 except for a single aspect:

We assume that the observation of other people choices can only enlarge the consideration

set of any given person. To formalize this idea, let us denote by

Qtn =
(
Pr
(
Γt1n ∪ Γt12n

)
,Pr

(
Γt2n ∪ Γt12n

)
,Pr

(
Γt12n

))
the distribution of consideration sets for type n people at period of time t. Note that, by

construction, Qtn ∈ P for all t ≥ 0. Initially, at time 0, the two technologies are allocated in

the population according to the joint distribution function P0. If this allocation is the same

across types (i.e., random initial allocation), then it also defines the initial distribution of

consideration sets. That is, P0 = Q0n for all n = 1, ..., N. For each t > 0, the mapping of
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technology diffusion, for each type n, takes the form of

Ptn =


BR1n11 0 (BR12n − BR1n) 11

0 BR2n12 (BR12n − BR2n) 12

0 0 1 (BR12n = 1, 1)




Pr
(
Γt1n ∪ Γt12n | Pt−1,Qt−1n

)
Pr
(
Γt2n ∪ Γt12n | Pt−1,Qt−1n

)
Pr
(
Γt12n | Pt−1,Qt−1n

)
 .

This linear system differs from expression (1) as now current choices directly depend on both

the previous adoption rates and the previous distribution of consideration sets. It takes just

a bit of algebra to show that the distribution of consideration sets for type n people at period

of time t, Qtn, can be conveniently expressed as follows

Pr
(
Γt1n ∪ Γt12n | Pt−1,Qt−1n

)
= Pr

(
Γt−11n ∪ Γt−112n

)
+
[
1− Pr

(
Γt−11n ∪ Γt−112n

)]
E
{
π1n

(
St−11n

)}
Pr
(
Γt2n ∪ Γt12n | Pt−1,Qt−1n

)
= Pr

(
Γt−12n ∪ Γt−112n

)
+
[
1− Pr

(
Γt−12n ∪ Γt−12n

)]
E
{
π2n

(
St−12n

)}

Pr
(
Γt12n | Pt−1,Qt−1n

)
=



Pr
(
Γt−112n

)
+[

Pr
(
Γt−11n ∪ Γt−112n

)
− Pr

(
Γt−112n

)]
E
{
π2n

(
St−12n

)}
+[

Pr
(
Γt−12n ∪ Γt−112n

)
− Pr

(
Γt−112n

)]
E
{
π1n

(
St−11n

)}
+[

1− Pr
(
Γt−11n ∪ Γt−112n

)
− Pr

(
Γt−12n ∪ Γt−112n

)
+ Pr

(
Γt−112n

)]
E
{
π1n

(
St−11n

)
π2n

(
St−12n

)}
That is, the fraction of people who are currently considering technology 1, technology 2, and

both of them is the same as in the previous period of time plus a few terms that reflect the

social learning that takes place by observing other people′s choices.

Under this specification, the mapping of technology diffusion from a period of time to the

next takes the form of(
Pt,
(
Qtn
)N
n=1

)
= M∗

(
Pt−1,

(
Qt−1n

)N
n=1

)
=
(∑N

n=1
PtnH (n) ,

(
Qtn
)N
n=1

)
.

This mapping incorporates direct information about both adoption rates and consideration

sets across types. Recall that Qtn ∈ P for all t ≥ 0. Thus, the diffusion process M∗ is a

mapping from the set PN+1 into itself (i.e., M∗: PN+1→ PN+1). The next result states that

the claims in Lemmas 1 and 2 extend to this alternative specification. All other propositions

remain valid because they are based on these two lemmas and the 3× 3 matrix in expression

(1), which has not changed.
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Lemma 7 PN+1 (partially) ordered by the UO order is a complete lattice and mapping M∗:

PN+1→ PN+1 is monotone increasing (in the UO order).

The next example shows that, as expected, this second model facilitates diffusion.

Example 6 Let us use the specification of Example 4 with the new diffusion process. That

is, suppose there is only one type of person with a utility function specified as follows

U (0, 0) = 10, U (1, 0) = 5, U (0, 1) = 6, and U (1, 1) = 15.

This function is SPM (and thus Q-SPM). Moreover, BR1 = (0, 0), BR2 = (0, 0), and BR12 =

(1, 1) . In addition, let us assume d = 1, π1 (S1) = 1 (S1 ≥ 1), and π2 (S2) = 1 (S2 ≥ 1).

Under the new diffusion model, the distribution of consideration sets in period t is

Pr
(
Γt1 ∪ Γt12 | Pt−1,Qt−1

)
= Pr

(
Γt−11 ∪ Γt−112

)
+
[
1− Pr

(
Γt−11 ∪ Γt−112

)]
Pt−11

Pr
(
Γt2 ∪ Γt12 | Pt−1,Qt−1

)
= Pr

(
Γt−12 ∪ Γt−112

)
+
[
1− Pr

(
Γt−11 ∪ Γt−112

)]
Pt−12

Pr
(
Γt12 | Pt−1,Qt−1

)
=



Pr
(
Γt−112

)
+[

Pr
(
Γt−11 ∪ Γt−112

)
− Pr

(
Γt−112

)]
Pt−12 +[

Pr
(
Γt−12 ∪ Γt−112

)
− Pr

(
Γt−112

)]
Pt−11 +[

1− Pr
(
Γt−11 ∪ Γt−112

)
− Pr

(
Γt−12 ∪ Γt−112

)
+ Pr

(
Γt−112

)]
Pt−111

In addition,

Pt =


0 0 1

0 0 1

0 0 1




Pr
(
Γt1 ∪ Γt12 | Pt−1,Qt−1

)
Pr
(
Γt2 ∪ Γt12 | Pt−1,Qt−1

)
Pr
(
Γt12 | Pt−1,Qt−1

)
 .

In this simple specification, there are (only) two fixed points in terms of adoption rates

P1 = P2 = P11 = 0 and P1 = P2 = P11 = 1.

Moreover, for any initial allocation, diffusion is larger under this specification as compared to

the one we considered earlier in Example 4. �
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Note that in this alternative specification of the co-diffusion process, many initial alloca-

tions would often converge to a situation in which all the population ends up considering the

two technologies (i.e., Γ = Γ12). Even in this case, the optimal seeding strategy is important

as it guarantees higher diffusion rates at each period of time.

4.2 Alternative Friendship Structure

In our limited attention mechanism, a type n person crosses paths with dn people at each

time and observes their choices. Each person in this group of people is a random draw from

the full population. Under this specification, the probability over the union of consideration

sets
Pr
(
Γt1n ∪ Γt12n | Pt−1

)
= E

{
π1n

(
St−11n

)}
Pr
(
Γt2n ∪ Γt12n | Pt−1

)
= E

{
π2n

(
St−12n

)}
Pr
(
Γt12n | Pt−1

)
= E

{
π1n

(
St−11n

)
π2n

(
St−12n

)} (5)

is obtained by taking the expectation with respect to the full distribution of adoption rates

at time t − 1. Coupled with information about best-replies, these probabilities characterize

the diffusion process at the level of each type. The diffusion process at the population level is

just a weighted average of the latter across all types (see Eq. (1) and (3) in Sub-Section 3.1).

In some cases, it might be reasonable to think that a type n person only interacts with

people who belong to a few other types or that he interacts with people from all other types

but with a frequency that differs from the distribution of types in the population. To capture

these possibilities we can postulate that each of the dn people with whom a type n person

crosses paths with is a random draw from a distribution

Gn (n′) for n′ = 1, 2, ...,N with
∑N

n′=1
Gn (n′) = 1.

Note that this distribution could sharply differ from the distribution of types in the population,

H(·) . In addition, note that this friendship structure can easily accommodate homophily by

letting Gn (n′) be very large for n′ = n.
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From a technical perspective, this alternative specification of the model would affect the

distribution of adoption rates that we use to calculate the expectations in Eq. (5) above.

Since all our results are initially built at the level of each type and then added up at the

population level, the main insights of our work would remain. This richer definition of types

would be at the cost of some extra notation.

4.3 Competing Firms

We have focused on the case of a single firm (i.e., a Monopoly) that controls two comple-

mentary technologies and aims to allocate them among people in the network to maximize

diffusion. We now assume that these two technologies belong to different firms, and each of

them controls the distribution of its own technology. We let each firm decide how many units

(of its own technology) to initially allocate in the population, taking as given the seeding

decision of the other firm. We use Nash equilibrium as our solution concept. Below, we char-

acterize this game and state the precise sense in which any Nash equilibrium is ineffi cient.14

There are two firms: Firm 1 provides technology 1, and Firm 2 provides technology 2. The

preferences, network structure, and limited attention mechanism are as described in Section

2.1. Firm 1 decides the fraction of people that initially receive technology 1, i.e., P01. In

a similar way, Firm 2 decides about P02. As this is a competitive setting, we assume that

these two decisions are made independently. Thus, for each pair of marginals, P01 and P
0
2, the

induced joint distribution of initial technologies (P0) is as follows

P000 =
(
1− P01

) (
1− P02

)
, P001 =

(
1− P01

)
P02, P

0
10 = P01

(
1− P02

)
, and P011 = P01P

0
2.

In particular, this means that the fraction of people who get the two technologies is just the

product of the two marginals. (Naturally, these four probabilities add up to 1.)

14Our results apply to any Nash equilibrium when there is at least one. So, they are robust to multiplicity

of equilibria. Along the analysis we will abstract from showing equilibrium existence; doing so would require

imposing extra restrictions (e.g., convexity/concavity assumptions on the profit functions).
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Let the induced diffusion process Pt corresponding to the competitive (or non-cooperative

NC) initial allocation converge to the joint distribution PNC
(
P01,P

0
2

)
with corresponding

marginals PNC1
(
P01,P

0
2

)
and PNC2

(
P01,P

0
2

)
. By definition, these marginals are the fraction of

people that adopt technologies 1 and 2 in the long run, given the initial decision of each firm.

We model the profits of these firms at the steady state equilibrium as

ΠNC1
(
P01,P

0
2

)
= b1P

NC
1

(
P01,P

0
2

)
− C1

(
P01
)
and ΠNC2

(
P01,P

0
2

)
= b2P

NC
2

(
P01,P

0
2

)
− C2

(
P02
)

where b1,b2 > 0 are the benefits of a one percent increase in the fraction of people who get

each technology, and C1 (·) and C2 (·) are the costs of the initial allocation for Firms 1 and

2, respectively. We will refer to this game as the Seeding Game (SG). A Nash equilibrium of

the SG is a pair P∗1, P
∗
2 that satisfies

P∗1 ∈ arg maxP01
{

ΠNC1
(
P01,P

∗
2

)
: P01 ∈ [0, 1]

}
and P∗2 ∈ arg maxP02

{
ΠNC2

(
P∗1,P

0
2

)
: P02 ∈ [0, 1]

}
.

Our first result establishes an interesting characteristic of this game.

Lemma 8 The SG has positive spillovers, i.e., ΠNCi
(
P01,P

0
2

)
increases in P0j for each i 6= j.

This result states that each firm benefits when the other firm initially distributes a larger

number of technologies among people. From a technical perspective, the proof of Lemma 8

follows from Proposition 4. Specifically, by Proposition 4, we know that PNC1
(
P01,P

0
2

)
increases

in P02. Since b1 > 0, the net benefits of Firm 1 increase with P02. The result follows because

P02 does not enter the cost of initial allocation for Firm 1. From an economic perspective, this

result derives from the complementarity among the two technologies.

We finally show that any Nash equilibrium of the SG is ineffi cient in a precise way: The

firms would benefit from targeting the same consumers for the initial allocation. We also show

that if the preferences of the consumers with respect to the two technologies are supermodular

(instead of just Q-SPM), then the coordinating strategy also favors them. Thus, in this case,

incentives are aligned between the two firms and the consumers. These results build directly

on Propositions 4 and 6 in Section 3.
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Let P01 and P
0
2 be the initial allocations of Firms 1 and 2, respectively. But suppose now

that these two firms coordinate their actions. In particular, suppose they agree on allocating

the two technologies in the same hands as much as possible. If they do so, then

P011 = min
{
P01,P

0
2

}
.

Let the induced diffusion process Pt of the cooperative (C) strategy converge to the joint

adoption distribution PC
(
P01,P

0
2

)
with corresponding marginals PC1

(
P01,P

0
2

)
and PC2

(
P01,P

0
2

)
.

The profits of these firms at the steady state equilibrium are

ΠC1
(
P01,P

0
2

)
= b1P

C
1

(
P01,P

0
2

)
− C1

(
P01
)
and ΠC2

(
P01,P

0
2

)
= b2P

C
2

(
P01,P

0
2

)
− C2

(
P02
)
.

Note that, for each pair P01, P
0
2, it is always the case that

min
{
P01,P

0
2

}
≥ P01P02.

Thus, the allocation of technologies of the cooperative strategy is higher (with respect to the

UO order) than the one generated by simple competition. By Proposition 4, we get that

PC1
(
P01,P

0
2

)
≥ PNC1

(
P01,P

0
2

)
and PC2

(
P01,P

0
2

)
≥ PNC2

(
P01,P

0
2

)
.

It follows that the benefits of the firms are also higher under the coordinated strategy. Since

the two strategies initially allocate the same number of technologies, they share the same cost

of diffusion. This result holds for any pair of initial allocations, including the equilibrium

ones. The next proposition formalizes these claims and states that consumers are also better

off when the firms coordinate strategies if their preferences are supermodular (instead of just

Q-SPM).

Proposition 9 For any Nash equilibrium P∗1,P
∗
2 of the SG, we have that

ΠC1 (P∗1,P
∗
2) ≥ ΠNC1 (P∗1,P

∗
2) and ΠC2 (P∗1,P

∗
2) ≥ ΠNC2 (P∗1,P

∗
2) .

Also, assume that, for some n ∈ {1, 2, ..., N}, Un is SPM. Then we have that

E (Vn | P∗1,P∗2,min {P∗1,P∗2}) ≥ E (Vn | P∗1,P∗2,P∗1P∗2) .
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We finally extend Example 4 to contemplate competition between the two firms and

illustrate the statements in Lemma 8 and Proposition 9.

Example 7 Let us use again the specification of Example 4, but this time with the duopoly

model. To this end, let b1 = 4, b2 = 4, C1
(
P01
)

= 1
4
P01 +

(
P01
)2
and C2

(
P02
)

= 1
4
P02 +

(
P02
)2
.

The other parts of the model remain as before. Thus, mapping M takes the form of

Pt = M
(
Pt−1

)
=
(
Pt−111 ,P

t−1
11 ,P

t−1
11

)
.

It follows, as we showed earlier, that

Pt1 = P011, P
t
2 = P011, and P

t
11 = P011 for all t ≥ 1.

Recall that, for each pair of actions P01, P
0
2, the initial allocation in the SG entails P

0
11 =

P01P
0
2. Therefore, the steady state distribution of adoptions in the non-cooperative setting is

given by

PNC1
(
P01,P

0
2

)
= P01P

0
2, P

NC
2

(
P01,P

0
2

)
= P01P

0
2, and P

NC
11

(
P01,P

0
2

)
= P01P

0
2.

Finally, the steady state equilibrium profits are

ΠNC1
(
P01,P

0
2

)
= 4P01P

0
2 −

(
1

4
P01 +

(
P01
)2)

and ΠNC2
(
P01,P

0
2

)
= 4P01P

0
2 −

(
1

4
P02 +

(
P02
)2)

.

Note that ∂ΠNCi
(
P01,P

0
2

)
/∂P0j = 4P0i ≥ 0 for i 6= j, as Lemma 8 states.

The first order conditions of the maximization problems of the firms are15

∂ΠNC1
(
P01,P

0
2

)
∂P01

= 4P02 −
1

4
− 2P01 = 0 and

∂ΠNC2
(
P01,P

0
2

)
∂P02

= 4P01 −
1

4
− 2P02 = 0

Then, the best-reply functions of these firms are

P01 = 2P02 −
1

8
and P02 = 2P01 −

1

8
.

15Note that, in this example, ∂Πi

(
P01,P

0
2

)
/∂P01∂P

0
2 = 4 > 0 for i = 1, 2. That is, the SG is a supermodular

game. If this feature were robust under other specifications, then we could use Tarski’s fixed point theorem

to establish equilibrium existence. We do not think this feature immediately extends to the general model.
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These best-replies lead to a unique Nash equilibrium

P∗1 =
1

8
and P∗2 =

1

8
,

and steady-state equilibrium profits of the SG are

ΠNC1

(
1

8
,
1

8

)
=

1

64
and ΠNC2

(
1

8
,
1

8

)
=

1

64
.

If these firms agree on implementing the cooperative allocation, then PC011 = 1
8
. In this

case, the long run distribution of adoption rates would be

PC1 =
1

8
, PC2 =

1

8
, and PC11 =

1

8
,

which leads to the following steady state cooperative payoffs

ΠC1

(
1

8
,
1

8

)
=

29

64
and ΠC2

(
1

8
,
1

8

)
=

29

64
.

As Proposition 9 states, the profits of the firms are higher under coordination.

Finally, recall that in Example 4 there is only one type of person with a utility function

specified as follows

U (0, 0) = 10, U (1, 0) = 5, U (0, 1) = 6, and U (1, 1) = 15.

Note that this utility function is indeed SPM. Given the previous results, we get that

E (Vn | P∗1,P∗2,min {P∗1,P∗2}) =
15

8
>

15

64
= E (Vn | P∗1,P∗2,P∗1P∗2) .

As Proposition 9 also states, the weighted average indirect utility of the population is higher

when the firms coordinate their diffusion strategies. Thus, incentives are aligned for firms

and consumers in this setting. �

5 Conclusion

This paper studies the co-diffusion process of two complementary technologies among people

who are connected through a social network. In doing so, we address a question on optimal
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network seeding that has no counterpart in the case of a single technology. Specifically, we

show that (for fixed marginals) adoption rates are maximized over time when the initial frac-

tion of people who get the two technologies is maximized. From a theoretical standpoint,

our result relates to the increasing and supermodular (ISPM) stochastic order. From a mod-

elling perspective, our approach connects stochastic choice sets with network or peer effects.

We believe this connection opens new possibilities for the empirical identification of random

consideration sets. Finally, we show that our results prove useful to establish the source of

ineffi ciency of Nash equilibrium behavior in an extension of the model that accommodates

strategic interactions in seeding strategies among two firms.
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Appendix: Proofs

Proof of Lemma 1: Let the set of all bivariate Bernoulli distributions P = (P1,P2,P11) be

P = {P : P1 ∈ [0, 1] ,P2 ∈ [0, 1] , and P11 ∈ [max {0,P1 + P2 − 1} ,min {P1,P2}]} .

By construction, P ⊂ R3. We will use the coordinatewise order in the 3-dimensional Euclidean

space to compare elements. Note that when we restrict attention to elements in P, the

coordinatewise order coincides with the UO order. We want to show that P (partially) ordered

by the UO order is a complete lattice (i.e., each non-empty subset has an infimum and a

supremum). Since P is a compact subset of the Euclidean space with the usual coordinatewise

order, it suffi ces to show that P (partially) ordered by the UO order is a lattice.

Given P′ ∈ R3 and P′′ ∈ R3, denote by inf (P′,P′′) and sup (P′,P′′) the coordinatewise

infimum and supremum of P′ and P′′ in R3, that is

inf (P′,P′′) = (min {P′1,P′′1} ,min {P′2,P′′2} ,min {P′11,P′′11}) and

sup (P′,P′′) = (max {P′1,P′′1} ,max {P′2,P′′2} ,max {P′11,P′′11}) .

Given P′ ∈ P and P′′ ∈ P, denote infP (P′,P′′) and supP (P′,P′′) the coordinatewise infimum

and supremum of P′ and P′′ in P. We show below that infP (P′,P′′) = inf (P′,P′′) and

supP (P′,P′′) = (max {P′1,P′′1} ,max {P′2,P′′2} ,max {max {P′1,P′′1}+ max {P′2,P′′2} − 1,P′11,P
′′
11}) .

(Thus, P is a lattice.) We divide the proof in two parts.

Part 1: Let P′ ∈ P and P′′ ∈ P. We next show that infP (P′,P′′) = inf (P′,P′′). Since

inf (P′,P′′) is the coordinatewise infimum of P′ and P′′ in R3 and P ⊂ R3, we only need to

show that inf (P′,P′′) ∈ P. Since P′ ∈ P and P′′ ∈ P

P′1 ∈ [0, 1] ,P′2 ∈ [0, 1] ,P′′1 ∈ [0, 1] , and P′′2 ∈ [0, 1]

Thus,

min {P′1,P′′1} ∈ [0, 1] and min {P′2,P′′2} ∈ [0, 1] .
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We next show that

min {P′11,P′′11} ∈ [max {0,min {P′1,P′′1}+ min {P′2,P′′2} − 1} ,min {min {P′1,P′′1} ,min {P′2,P′′2}}] .

We further divide Part 1 in two parts.

Part 1(i): We next show that min {P′11,P′′11} ≥ max {0,min {P′1,P′′1}+ min {P′2,P′′2} − 1}.

Since P′ ∈ P and P′′ ∈ P, then P′11 ≥ 0 and P′′11 ≥ 0. Thus, min {P′11,P′′11} ≥ 0. In addition,

P′11 ≥ P′1 + P′2 − 1 and P′′11 ≥ P′′1 + P′′2 − 1.

It follows that

min {P′11,P′′11} ≥ min {P′1,P′′1}+ min {P′2,P′′2} − 1.

The claim follows by combining the last two results.

Part 1(ii): We next show that min {P′11,P′′11} ≤ min {min {P′1,P′′1} ,min {P′2,P′′2}} . Since P′ ∈

P and P′′ ∈ P, then

P′11 ≤ P′1,P′11 ≤ P′2,P′′11 ≤ P′′1, and P′′11 ≤ P′′2.

Thus,

min {P′11,P′′11} ≤ min {P′1,P′2,P′′1,P′′2} = min {min {P′1,P′′1} ,min {P′2,P′′2}} .

This last claim completes Part 1.

Part 2: Let P′ ∈ P and P′′ ∈ P. We next show that

supP (P′,P′′) = (max {P′1,P′′1} ,max {P′2,P′′2} ,max {max {P′1,P′′1}+ max {P′2,P′′2} − 1,P′11,P
′′
11}) .

Since P′ ∈ P and P′′ ∈ P

P′1 ∈ [0, 1] ,P′2 ∈ [0, 1] ,P′′1 ∈ [0, 1] , and P′′2 ∈ [0, 1]
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Thus,

max {P′1,P′′1} ∈ [0, 1] and max {P′2,P′′2} ∈ [0, 1] .

Note also that any other upper bound P̂ for P′ and P′′, would require P̂1 ≥ max {P′1,P′′1} and

P̂2 ≥ max {P′2,P′′2} . Thus, we only need to show that

max {max {P′1,P′′1}+ max {P′2,P′′2} − 1,P′11,P
′′
11} ≤ min {max {P′1,P′′1} ,max {P′2,P′′2}} .

(The fact that this inequality suffi ces follows by the next argument. First, since P′11 ≥ 0 and

P′′11 ≥ 0,

max {max {P′1,P′′1}+ max {P′2,P′′2} − 1,P′11,P
′′
11} ≥ 0.

Also, by construction,

max {max {P′1,P′′1}+ max {P′2,P′′2} − 1,P′11,P
′′
11} ≥ max {P′1,P′′1}+ max {P′2,P′′2} − 1.

Second, as we mentioned above, any other upper bound P̂ for P′ and P′′ would require

P̂1 ≥ max {P′1,P′′1} and P̂2 ≥ max {P′2,P′′2} which would push the lower bound for the last

term P̂11 up.)

Since P′ ∈ P and P′′ ∈ P

P′11 ≤ P′1,P′11 ≤ P′2,P′′11 ≤ P′′1, and P′′11 ≤ P′′2.

Thus,

max {P′11,P′′11} ≤ min {max {P′1,P′′1} ,max {P′2,P′′2}} .

The fact that

max {P′1,P′′1}+ max {P′2,P′′2} − 1 ≤ min {max {P′1,P′′1} ,max {P′2,P′′2}} .

follows because max {P′1,P′′1} ∈ [0, 1] and max {P′2,P′′2} ∈ [0, 1] . �

The proof of Lemma 2 relies on three intermediate results that we cover in the next three

lemmas.
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Lemma 10 Let S1 =
∑d

i=1 x1i, S2 =
∑d

i=1 x2i, T1 =
∑d

i=1 y1i, and T2 =
∑d

i=1 y2i. In addi-

tion, suppose that each (x1i, x2i) is an independent random draw from a bivariate Bernoulli dis-

tribution P and each (y1i, y2i) is an independent random draw from a bivariate Bernoulli dis-

tribution P , for i = 1, 2, ..., d. If P ≥uo P , then Pr (S1 ≥ k1, S2 ≥ k2) ≥ Pr (T1 ≥ k1, T2 ≥ k2)

for any k1, k2.

Proof of Lemma 10: The result follows by induction on d. Let d = 1. Note that

Pr (x11 ≥ k1, x21 ≥ k2) ≥ Pr (y11 ≥ k1, y21 ≥ k2)

follows by definition, given that P ≥uo P. Suppose the claim is true for d, so that

Pr (S1 ≥ k1, S2 ≥ k2) ≥ Pr (T1 ≥ k1, T2 ≥ k2) .

We need to show that the last inequality holds for d+ 1. To this end, note that

Pr (S1 + x1d+1 ≥ k1, S2 + x2d+1 ≥ k2)

=
∑

a,b
Pr (S1 + x1d+1 ≥ k1, S2 + x2d+1 ≥ k2 | x1d+1 = a, x2d+1 = b) Pr (x1d+1 = a, x2d+1 = b)

≥
∑

a,b
Pr (T1 ≥ k1 − x1d+1, T2 ≥ k2 − x2d+1 | x1d+1 = a, x2d+1 = b) Pr (x1d+1 = a, x2d+1 = b)

=
∑

a,b
Pr (T1 + x1d+1 ≥ k1, T2 + x2d+1 ≥ k2 | x1d+1 = a, x2d+1 = b) Pr (x1d+1 = a, x2d+1 = b)

= Pr (T1 + x1d+1 ≥ k1, T2 + x2d+1 ≥ k2)

=
∑

c,d
Pr (x1d+1 ≥ k1 − T1, x2d+1 ≥ k2 − T2 | T1 = c, T2 = d) Pr (T1 = c, T2 = d)

≥
∑

c,d
Pr (y1d+1 ≥ k1 − T1, y2d+1 ≥ k2 − T2 | T1 = c, T2 = d) Pr (T1 = c, T2 = d)

= Pr (T1 + y1d+1 ≥ k1, T2 + y2d+1 ≥ k2)

where the inequalities hold because P ≥uo P and (x1d+1, x2d+1) and (y1d+1, y2d+1) are inde-

pendent of (S1, S2) and (T1, T2), respectively. In addition, the equalities hold by the Law of

Total Probability. �

Lemma 11 Let S1 =
∑d

i=1 x1i, S2 =
∑d

i=1 x2i, T1 =
∑d

i=1 y1i, and T2 =
∑d

i=1 y2i. Assume

Pr (S1 ≥ k1, S2 ≥ k2) ≥ Pr (T1 ≥ k1, T2 ≥ k2) for any k1, k2. Then,
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1. E{π1n (S1) π2n (S2)} ≥ E{π1n (T1)π2n (T2)}

2. E{π1n (S1)} ≥ E{π1n (T1)}

3. E{π2n (S2)} ≥ E{π2n (T2)}

Proof of Lemma 11: Recall that π1n (·) and π2n (·) are non-negative and increasing func-

tions. Then, Point 1 follows by Theorem 3.3.16 in M
..
uller and Stoyan, 2002. In addition,

Points 2 and 3 follow by the standard characterization (in terms of the expectation of increas-

ing functions) of first-order stochastic dominance. �

Lemma 12 BR12n ≥ BR1n+ BR2n for each n = 1, 2, ..., N.

Proof of Lemma 12: Note that BR1n is either (0, 0) or (1, 0) and BR2n is either (0, 0) or

(0, 1) . In addition, BR12n ∈ {(0, 0) , (1, 0) , (0, 1) , (1, 1)}. To prove this lemma we consider

four cases.

Case 1: Let BR1n = (0, 0) and BR2n = (0, 0). Then, BR12n ≥ BR1n+ BR2n = (0, 0).

Case 2: Let BR1n = (0, 0) and BR2n = (0, 1) . Since the utility is Q-SPM, we know that

Un (0, 1) > Un (0, 0) =⇒ Un (1, 1) > Un (1, 0) .

The left hand side holds here as BR2n = (0, 1) and there are no ties. Thus, BR12n is either

(0, 1) or (1, 1). In both cases, BR12n ≥ BR1n+ BR2n = (0, 1).

Case 3: Let BR1n = (1, 0) and BR2n = (0, 0). This case is similar to the last one, thus we

omit it.

Case 4: Let BR1n = (1, 0) and BR2n = (0, 1). Since the utility is Q-SPM, we know that

Un (0, 1) > Un (0, 0) =⇒ Un (1, 1) > Un (1, 0) .
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The left hand side holds here as BR2n = (0, 1) and there are no ties. Since the utility is

Q-SPM, we know that

Un (1, 0) > Un (0, 0) =⇒ Un (1, 1) > Un (0, 1) .

The left hand side holds here as BR1n = (1, 0) and there are no ties. Given the last two

results, BR2n = (1, 1) = BR1n+ BR2n = (1, 1). �

Proof of Lemma 2: Let P
t−1 ≥uo Pt−1. By Lemmas 10 and 11, we have that the three

probabilities in expression (2) are higher when the consideration sets are generated by P
t−1

as compared to Pt−1. By Lemma 12, BR12n ≥ BR1n+ BR2n. As a consequence, all terms in

the 3 × 3 matrix in expression (1) are (weakly) positive for each n = 1, 2, ..., N. The three

lemmas together imply that the probabilities Pt1n, P
t
2n, and P

t
11n generated by P

t−1
are larger

than the ones generated by Pt−1. Then, the claim holds as

Pt1 =
∑N

n=1
Pt1nH (n) , Pt2 =

∑N

n=1
Pt2nH (n) , and Pt11 =

∑N

n=1
Pt11nH (n)

are simple weighted averages of Pt1n, P
t
2n, and P

t
11n across n = 1, 2, ..., N. �

Proof of Theorem 3: By construction, M: P → P. By Lemma 1, P ordered by the UO

order is a complete lattice. By Lemma 2, mapping M is increasing. Thus, by Tarski′s fixed

point theorem, the set of fixed points is a non-empty complete lattice. �

Proof of Proposition 4: By Lemma 2, we know that, for each t > 0, if P
t−1 ≥uo Pt−1 then

P
t ≥uo Pt. Let t = 1, we have that P

0 ≥uo P0 implies P
1 ≥uo P1. Applying Lemma 2 t − 1

more times we get P
t ≥uo Pt. This shows the first claim.

The second claim follows from the previous one and the fact that the ISPM order is closed

with respect to weak convergence (see M
..
uller and Stoyan, 2002, Theorem 3.9.12). �

Proof of Proposition 5: We first show that, for each Pt−1, Pt increases (w.r.t. the UO

order) in d and π1 (·) , π2 (·). It is clear that, for each Pt−1, the three lines in (2) increase in
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d and π1, π2. Then, the probabilities Pt1n, P
t
2n, and P

t
11n increase in d and π1, π2. The claim

holds as

Pt1 =
∑N

n=1
Pt1nH (n) , Pt2 =

∑N

n=1
Pt2nH (n) , and Pt11 =

∑N

n=1
Pt11nH (n)

are simple weighted averages of Pt1n, P
t
2n, and P

t
11n across n = 1, 2, ..., N.

Fix some P0 and let P
t
and Pt be generated by d, π1, π2 and d, π1, π2. By our initial result,

we know that P
1 ≥uo P1. Let Md,π1,π2

(
Pt−1

)
and Md,π1,π2

(
Pt−1

)
be mapping M in (3) for

d, π1, π2 = d, π1, π2 and d, π1, π2 = d, π1, π2, respectively. We have that

P
2

= Md,π1,π2
(
P
1
)
≥uo Md,π1,π2

(
P1
)
≥uo Md,π1,π2

(
P1
)

= P2

where the first inequality follows by Lemma 2 and the second one by our initial claim. The

first part of the proposition follows by applying this idea t− 2 more times.

The second claim follows from the previous one and the fact that the ISPM order is closed

with respect to weak convergence (see M
..
uller and Stoyan, 2002, Theorem 3.9.12).

The last part of the proposition follows by Theorem 2.5.2 in Topkis (1998). �

Proof of Proposition 6: Let V•n = Un (BR•n), for • = 0, 1, 2, 12, be the indirect utility for

a type n person under different consideration sets. The expected indirect utility of this type

of person in period of time t can be expressed as follows

E
(
Vn | Pt−1

)
= V0n + (V1n −V0n) Pr

(
Γt1n ∪ Γt12n | Pt−1

)
+ (V2n −V0n) Pr

(
Γt2n ∪ Γt12n | Pt−1

)
+ (V12n +V0n −V1n −V2n) Pr

(
Γt12n | Pt−1

)
.

Let P
t−1 ≥uoPt−1. By Lemmas 10 and 11, we have that the three probabilities in the last

expression are higher when the consideration sets are generated by P
t−1
as compared to Pt−1.

Also, by the optimization principle we have that V1n−V0n ≥ 0 and V2n−V0n ≥ 0. Thus, we

only need to show that if Un is SPM then

V12n +V0n −V1n −V2n ≥ 0.
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There are two cases to consider.

Case 1: Assume that either BR1n or BR2n is (0, 0). In this case the result follows as, by the

optimization principle, V12n−V1n ≥ 0 and V12n−V2n ≥ 0.

Case 2: Assume BR1n = (1, 0) and BR2n = (0, 1). In this case, by Lemma 12 we know that

BR12n = (1, 1) . By SPM we know that

V12n +V0n = Un (1, 1) +Un (0, 0) ≥ Un (1, 0) +Un (0, 1) = V1n +V2n

The rest of the proof is similar to the proof of Proposition 5, thus we omit it. �

Proof of Lemma 7: By Lemma 1, P (partially) ordered by the UO order is a complete

lattice. The first claim follows as the product of complete lattices is a complete lattice.

Given the proof of Lemma 2, to show the monotonicity of M∗ we only need to prove that

Qtn increases with P
t−1 and Qt−1n (with respect to the UO order). Let us first consider

Pr
(
Γt12n | Pt−1,Qt−1n

)
=



Pr
(
Γt−112n

)
+[

Pr
(
Γt−11n ∪ Γt−112n

)
− Pr

(
Γt−112n

)]
E
{
π2n

(
St−12n

)}
+[

Pr
(
Γt−12n ∪ Γt−112n

)
− Pr

(
Γt−112n

)]
E
{
π1n

(
St−11n

)}
+[

1− Pr
(
Γt−11n ∪ Γt−112n

)
− Pr

(
Γt−12n ∪ Γt−112n

)
+ Pr

(
Γt−112n

)]
E
{
π1n

(
St−11n

)
π2n

(
St−12n

)}
Note that, by definition,

E
{(

1− π1n
(
St−11n

)) (
1− π2n

(
St−12n

))}
+ E

{
π1n

(
St−11n

) (
1− π2n

(
St−12n

))}
+

E
{(

1− π1n
(
St−11n

))
π2n

(
St−12n

)}
+ E

{
π1n

(
St−11n

)
π2n

(
St−12n

)}
= 1.

Re-arranging and simplifying terms, we obtain

1−E
{
π1n

(
St−11n

)}
−E

{
π2n

(
St−12n

)}
+E

{
π1n

(
St−11n

)
π2n

(
St−12n

)}
= E

{(
1− π1n

(
St−11n

)) (
1− π2n

(
St−12n

))}
≥ 0.

Thus, keeping fixed Pr
(
Γt−11n ∪ Γt−112n

)
and Pr

(
Γt−12n ∪ Γt−112n

)
, we have that

∂ Pr
(
Γt12n | Pt−1,Qt−1n

)
/∂ Pr

(
Γt−112n

)
= 1−E

{
π1n

(
St−11n

)}
−E

{
π2n

(
St−12n

)}
+E

{
π1n

(
St−11n

)
π2n

(
St−12n

)}
≥ 0.
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In addition,

∂ Pr
(
Γt12n | Pt−1,Qt−1n

)
/∂ Pr

(
Γt−11n ∪ Γt−112n

)
= E

{
π1n

(
St−11n

)}
− E

{
π1n

(
St−11n

)
π2n

(
St−12n

)}
≥ 0

∂ Pr
(
Γt12n | Pt−1,Qt−1n

)
/∂ Pr

(
Γt−12n ∪ Γt−112n

)
= E

{
π2n

(
St−12n

)}
− E

{
π1n

(
St−11n

)
π2n

(
St−12n

)}
≥ 0.

Thus, Pr
(
Γt12n | Pt−1,Qt−1n

)
increases in Qt−1n . The fact that Pr

(
Γt12n | Pt−1,Qt−1n

)
is also in-

creasing in Pt−1 holds as (by Lemma 11) an increase in Pt−1 positively affects E
{
π1n

(
St−11n

)}
,

E
{
π2n

(
St−12n

)}
, and E

{
π1n

(
St−11n

)
π2n

(
St−12n

)}
, and these three expectations are pre-multiplied

by positive terms. Thus, Pr
(
Γt12n | Pt−1,Qt−1n

)
increases when either Pt−1 or Qt−1n increase

with respect to the UO order. The fact that Pr
(
Γt−11n ∪ Γt−112n | Pt−1,Qt−1n

)
and Pr

(
Γt−12n ∪ Γt−112n | Pt−1,Qt−1n

)
increase when either Pt−1 or Qt−1n increase (with respect to the UO order) follows by similar

arguments. �

Proof of Lemma 8: Recall that in the SG each pair of marginals P01, P
0
2 selected by the

firms induces the next joint distribution of initial technologies (P0)

P000 =
(
1− P01

) (
1− P02

)
, P001 =

(
1− P01

)
P02, P

0
10 = P01

(
1− P02

)
, and P011 = P01P

0
2.

Let the induced diffusion process Pt converge to the joint distribution PNC
(
P01,P

0
2

)
with

corresponding marginals PNC1
(
P01,P

0
2

)
and PNC2

(
P01,P

0
2

)
. Note that, if P01 increases, then

P02 = P001+ P011 remains at the same level and P
0
11 increases. Thus, when Firm 1 increases

its initial allocation, the induced joint distribution of initial technologies P0 increases with

respect to the UO order. Thus, by Proposition 4, we have that PNC1
(
P01,P

0
2

)
and PNC2

(
P01,P

0
2

)
increase. In turn, this means that

ΠNC2
(
P01,P

0
2

)
= b2P

NC
2

(
P01,P

0
2

)
− C2

(
P02
)

moves up. Thus, ΠNC2
(
P01,P

0
2

)
increases in P01. A similar argument could be used to show

that ΠNC1
(
P01,P

0
2

)
increases in P02. �

Proof of Proposition 9: Let P∗1, P
∗
2 be a Nash equilibrium of the SG. This pair of choices

generate an initial allocation P0 characterized by

P01 = P∗1, P
0
2 = P∗2, and P

0
11 = P∗1P

∗
2.
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Let the induced diffusion process Pt converge to the joint distribution PNC (P∗1,P
∗
2) with

corresponding marginals PNC1 (P∗1,P
∗
2) and P

NC
2 (P∗1,P

∗
2) .

Consider next a coordinated initial allocation P0 with

P01 = P∗1, P
0
2 = P∗2, and P

0
11 = min {P∗1,P∗2} .

Let the induced diffusion process Pt converge to the joint distribution PC (P∗1,P
∗
2) with cor-

responding marginals PC1 (P∗1,P
∗
2) and P

C
2 (P∗1,P

∗
2) . Note that the non-cooperative and coop-

erative diffusion process start with the same marginals P∗1, P
∗
2 but differ regarding the joint

allocation. In particular,

min {P∗1,P∗2} ≥ P∗1P∗2.

Thus, PC (P∗1,P
∗
2) is higher than P

NC (P∗1,P
∗
2) with respect to the UO order. It follows by

Proposition 4, that

PC1 (P∗1,P
∗
2) ≥ PNC1 (P∗1,P

∗
2) and P

C
2 (P∗1,P

∗
2) ≥ PNC2 (P∗1,P

∗
2) .

Since b1 > 0, we get that

ΠC1 (P∗1,P
∗
2) = b1P

C
1 (P∗1,P

∗
2)− C1 (P∗1) ≥ ΠNC1 (P∗1,P

∗
2) = b1P

NC
1 (P∗1,P

∗
2)− C1 (P∗1) .

By a similar argument, we get that ΠC2 (P∗1,P
∗
2) ≥ ΠNC2 (P∗1,P

∗
2).

The last claim in Proposition 9 follows directly from Proposition 6 and the fact that the

cooperative initial allocation is higher than the competitive one (with respect to the UO

order). �
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