Online Appendix
Endogenous Information Acquisition in Bayesian Games with

Strategic Complementarities

Rabah Amir*and Natalia Lazzatif

November 22, 2015

This online appendix contains two items. First, in Appendix A we provide a simple model
—with closed form solution— that offers some intuitive view of both our approach and the
main results in the paper. Second, in Appendix B we elaborate on the possibility of decreasing

marginal returns of information acquisition, i.e., concavity of the value of information.

1 Appendix A: Motivating example

We present a simple version of the beauty-contest in the spirit of our model.! Versions of this
model were previously used by Hellwig and Veldkamp (2009) and Myatt and Wallace (2012).
The setting is also similar to the oligopoly models of Hauk and Hurkens (2001) and Vives (1988,
2008).2  Although the analysis can be easily extended to an arbitrary number of players, we

restrict attention to only two, for expositional ease.
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'The paper endogenizes information in the class of games studied by VZ-V. Thus, all their applications and

examples display payoffs that fulfill our assumptions. In addition, Examples 6 and 11 in the paper provide simple
ways to construct CDF's that satisfy our restrictions regarding information structure. Further applications of our

framework would then follow by combining the former VZ-V applications with our constructions.
’In oligopoly models, endogenous information acquisition has been also studied by Hwang (1993), Jansen

(2008), Li, McKelvey and Page (1987) and Dimitrova and Schlee (2003). As we do in this example, these papers

assume specific functional forms for the payoffs and often Gaussian signal distributions.



A player’s payoff depends on the proximity of his action, a; € R, to both the underlying

state variable, w, and the average group action, a = (aj + a2) /2,
wi =7 —(1—7)(a; —w)?—v(a; —@)?, i=1,2 (1)

where v € (0,1), and w is the realization of a random parameter drawn from a normal prior
with mean p and variance v2. The important feature of this model is that the marginal returns
of a player’s own action, increase with the action of the other player and with the state w.
Player ¢ decides how much to spend on information by choosing «;. In doing so, he determines
his information structure from a family of cdf’s { F (s;,w; ;) } indexed by a; € [0,1].3 We assume

the joint distribution of (s;,w) is the bivariate normal

1 1Yw
N[A, B (ai)], with A = (4, 11) and B (a;) = “ite 2)
aiv, V2

The variance of s; is normalized to 1 to highlight the fact that, in our setting, what really
matters to player i is the correlation between own signal and the state of the world.

We assume signals are independent conditional on w. Given a profile a, our conditions imply
that E(w |s;j; ;) = p+av, (si — p) and E(s—; |si; ) = p+a;a—; (s; — p) . The bivariate normal
distribution has many additional nice features. The most relevant for us is that a; orders the
family of signals according to the supermodular stochastic order.

Recall the timing of the game is as follows: First, participants select how much to spend
on information (i.e., ;). After observing the realization of their own signals, but neither the
experiment selected nor the message received by the other player, each of them chooses an
action. As observed by Hauk and Hurkens (2001), in this simple setting, it is quite easy to
solve for the Bayesian information Nash equilibrium. First, we solve for the (unique) Bayesian
Nash equilibrium in the second stage. Then, substituting players’ actions by the corresponding
strategies in the utility functions, we consider the game where only information levels need to
be chosen.

Assume for the moment that participants acquired a profile of information @ = (a1, ag) at
stage I, and focus on the game that follows. For each a € [0,1]%, it is well known that (for

the present formulation) the equilibrium strategies in the second stage are affine with respect to

3We restrict a; to the interval [0,1] to simplify the exposition.
4For this example, since players’ payoffs are both quadratic and supermodular, information could be modeled

with a mean-variance order. We opted for correlation to better connect the example to our general framework. The
reason is that bivariate normal distributions with the same marginals are ranked in the supermodular stochastic

order according to their correlation coefficient.



messages. To get them, we will assume player —i follows a strategy o_; (s—;) = a+b_; (s—; — p) .

Inserting this expression in (1) we get

ui == (1=7) (@i —w)* =7 (ai/2 = (a+ b (s — p)) /2)°.
If player i receives a message s;, his interim payoftf is

E (u;|si; ) = Mi—(1 = (3/4) ) af+2 (1 = 7) a; (p + v (si — ) +7a (a+ bjeiai (s; — 1)) /2.
(3)

where the conditional expectation is calculated with respect to the Bayesian updated beliefs. In

(3), M; = FE (U — (= w =7y (a+b_i(s_i—p)*/4|s;; a). We avoid the latter calculation

as M; does not play any fundamental role in the analysis that follows. Computing the first order

condition, his best-response is given by

1
a; = m {(1 — ’}/) n+ 7&/4 + [(1 — ’Y) oV, + ’beiaiafi/ll] (Si - /‘L)} . (4)

Substituting ¢ by —i, we can get the corresponding expression for the other player. Combining

results, the equilibrium strategies (as a function of «) are

1—(3/4)y + (1/4)va?, o
(1= (3/4)7)% = (yasa—i/4)*

Hence the sensitivity of player i’s strategy with respect to unexpected shocks (s; — p) increases

ai(si) = p+uve(1-7) (si —p), i=1,2. (5)

in both «; and a_;.

To attain the profile of information at equilibrium, we need to go one step back and find
the conditions under which no player ¢ has an incentive to deviate from ;. T'wo issues deserve
attention. First, since we model covert information acquisition, if player ¢ deviates at stage 1
from «; to o}, there is no strategic effect on the other player. Second, if player i selects o
instead of «;, he will use this information to update his interim strategy in the second stage as

follows )
1—(3/4)y + (1/4)yo;
D) p) O‘; (Si - N) (6)
(1= (3/4)7)" = (yaia—i/4)
where (6) is obtained by substituting o_; (s—;), as defined in (5), in (4). Notice that (6) depends

@i (sisaf) = p+ v, (1—7)

on both o} and «;; the reason is that player ¢ can improve his strategy after deviating but cannot
affect the other player’s beliefs and these beliefs do affect i’s optimal behavior.
Let’s assume player —i follows the equilibrium strategy at stage II corresponding to the

profile a. We let U; (o}; &) denote player 4’s highest expected payoff if he deviates from «; to



«f. Taking the unconditional expectation of u; after substituting a; by ¢; (si;}) and a_; by

o_i(s—i) we get

L (3/4)7 + (1/4) 702, ) 0/,2}
L= (3/9)7)° ~ (esai/a)?) [

It follows that player i’s highest expected payoff is increasing and convex in «. In other words,

Ui (o) = B (M; ) + (1— iv) {u2+ (Uw(l -7) (

the marginal returns to information are positive and increasing.

Taking into account the cost of information acquisition, player i will not have any incen-
tives to deviate from «; if o; € argmaxycjo1) {Ui (af; @) — a;} . We conclude that a profile of
information & = (a1, o) constitutes an equilibrium if it satisfies, simultaneously, the system®

3 1—3/)y+1/)v2 \> 5,
" argmax“ﬂ”’”{o_“) (0 G ) 0‘12_0“}

3 1- 3/ +1/)vd \° 5,

Since U; (o}; @) — ) is strictly convex in o and the constraint set is [0, 1], its argmax is either 0,
(2 (2 (2

1, or both, for ¢ = 1,2. Then any equilibrium candidate « reflects extreme behavior regarding
information acquisition: Players acquire the full information signal or no information at all as
Proposition 15 —in the paper— states. Here, a maximal and a minimal information equilibrium
always exist because the induced game at stage I is supermodular in the a’s.

In this setting a = (1,1) is an information equilibrium if

3
(147)1}3)21

and a = (0,0) constitutes an equilibrium if

vi(1—7)2/<1—i'y> <1

Thus the complete information game emerges endogenously if either the prior is very uninfor-
mative (v, large) or there are strong complementarities in the second stage (v small). The

opposite is true for the common uncertainty, no private information, game. In addition, if

(1_37)1132121)3(1—7)2/ (1—27)

then the extreme information profiles are both equilibria.
Several insights can be gleaned from this example. First, expected payoffs from deviating

increase in the correlation between the signal and the fundamental —see Footnote 4. Thus,

®We eliminated two constant terms in this system, as they don’t affect the maximizers.



players care about information because it allows a better match between the actions selected
and the underlying state variable. Given the complementarities in the model, this also allows
a better match between the players’ strategies. Although the value of information is always
positive, it is also costly and players sometimes decide not to get information at all.
Second, the quality of the signal decreases player ¢’s optimal strategy when he receives low
messages, and increases it for high messages. Formally,
O (sis ) v (1— ) 1—(3/4)y + (1/4)ya2,
da (1= (3/4)7)° = (vaia—i/4)

which is positive if s; > p© and negative otherwise. This result follows from Proposition 8 —in

(si — 1)

the paper— if we let u = s} (a4, a}) = s7* (a, o) for all a; > .

Third, as stated in Lemma 14 —in the paper—, the convexity of the payoffs induces players
to behave in an extreme fashion with respect to information acquisition: Either both pick the
full information signal or remain fully uninformed. Thus, our result explains the emergency of

the full information game as an endogenous outcome.®

2 Appendix B: Concavity of information quality

This appendix explores the scope for a player’s maximal expected payoff to be concave, as
opposed to convex, in own information level. The interest in such a property is obvious, since
this result would in particular guarantee existence of pure strategy equilibrium via the standard
topological approach.

For (one-player) decision problems under uncertainty, several studies have elaborated on the
difficulties involved in getting the value of information to be globally concave, most notably
Radner and Stiglitz (1984) and Chade and Schlee (2002). We show that the present approach
also sheds light on this issue.

Before presenting our main result, we introduce the dual version of Definition 9 in the paper.

Definition 1 Assume the family {F (s;,w;;)} shares the same marginals. We say

;i €la,a]

F (si,w; ;) is concave in o in the supermodular order if, Vo, o, € [a, @], YA € [0,1]
F (si,w;dag + (1= X)af) = AF (sj,w;o5) + (1 = A) F (si,w; 0) V¥ (s5,w). (7)

That is, if F (s;,w; ;) is concave in oy on [a, @] .

SNote that when a; = 1 then the conditional variance of @& given s; vanishes and the signal reveals the value

of the fundamental with certainty.



We next offer a characterization of this definition via expectations of supermodular functions.
Lemma 2 F (s;,w;q;) is concave in o in the spm order iff, Yoy, ol € [a, @], YA € [0, 1],

/ h(si,w) dF (s;,w;of) > )\/ h(si,w) dF (s;,w;a;)+(1 — )\)/ h(si,w) dF (s;,w;af)
SZ'XQ SZ‘XQ SZ'XQ (8)

(here o] = Ao + (1 — X) o) for all supermodular functions h for which the expectations exist.

Proof: Let a;, ¢ € [a,al. As AF (s;,w;a5) + (1 — A) F (s, w; ) is a convex combination of
two cdf’s with the same marginals, it is a cdf with the same marginals.

Let o = Aa; + (1 — A) o). Since F (sj,w; ) and AF (s;,w; ;) + (1 — A) F (84, w; o) have
the same marginal distributions, we can try to compare them in terms of the supermodular
stochastic order. Let h (s;,w) be a supermodular function with finite expectation with respect

to both cdf’s. By Lemma 5 in the paper, the following two conditions are equivalent
(i) F(si,w;af) > AF (si,w;05) + (1 = X) F (s4,w; o) ¥ (s4,w) € S; x Q
(ii) / h(si,w)dF (s;,w;af) > h(si,w) d[AF (si,w;05) + (1 — X) F (84, w; )]
SiXQ SiXQ
Since expectation is a linear operator, condition (ii) is in turn equivalent to

h(si,w) dF (si,w;a;)+(1 — )\)/ h(si,w) dF (s;,w; ).
SZ'XQ

(iii) / h(si,w)dF (s;,w;af) > )\/
SiXQ S

iXQ

Thus (i) is satisfied if and only if (iii) is fulfilled, which is exactly our claim. O

In terms of our set-up, the spm order ranks informativeness in the sense that a higher «;
leads to higher chances of observing high realizations of the signal when the state of the world is
high, and low realizations when the state of the world is low. This new notion of concavity refers
to how fast «a; raises informativeness. It means that «; raises informativeness with decreasing
returns.

Since Lemma 2 is simply the dual of Lemma 10 in the paper, the first part of our proof of
convex information value works for concavity as well. However, the second part of the proof
fails as the pointwise maximum of a collection of concave functions need not be concave. While
a similar approach can characterize concavity of U; (o, v) in o, it entails a very restrictive joint

concavity condition on own second-stage actions and signals, as captured by the next result.”

"In addition, the construction of information structures in Example 11 in the paper admits an obvious concave
analog, obtained by simply reversing the relevant inequalities. In this construction, concavity of the information

structure entails no more restrictiveness (in the mathematical sense) than its convexity.



Proposition 3 Assume that
/ / ui (a; (si), 00— (s—;) ,w) dF (s_i|w; a—; ) dF (s;, w; o) 9)
SixQ i
is jointly concave on A; X [a, @, i.e., in (a; (s;),a}). Then, U; (o, o) is concave in .

Proof: Let A € [0,1], o} and « denote two arbitrary elements of [a, @], and o = Ao} +

(1 —X) . The following inequalities prove the result,

Ui (o, a) = / / w;i (@5 (si;04") ,o—i (=) ,w) dF (s—; |w; a—; ) dF (s, w; af’)
SixQJS_

v

/ / Uu; )‘% Si; o ) 1-MN® (sl, ") o_; (s_i),w) dF (s_jw;a_;)dF (si,w;a;”)
S %) _

v

/S uz( (sz,o/) Lo (s—i), )dF (s |lw; ) dF (si,w;a;)

i xQJS_;

) [ (ssel) 7)) P s i) AP (s i)

K3 3

= AU; (aiv a) + (1 - )\) U; (Oél- s Oé)

where the first inequality follows from the optimality of @; and the second from the assumption

of joint concavity. O

The joint concavity condition of Proposition 3 does not lend itself to a simple decomposition
into separate components placed directly on the primitives of the game. Indeed, it can be seen
by inspection that the integral (9) will be concave in a; (s;) if we assume that u; is concave
in a;. In addition, the integral (9) will also be concave in o] if F (s;,w;q;) is concave in o
in the supermodular order (the proof of the latter fact is a direct dual of that for the convex
case). However, although the stated conditions guarantee the concavity of (9) in each of the two
arguments a; (s;) and o, they are not sufficient for the needed joint concavity in (a; (s;), ).
This is the reason for which we claim that the sufficient conditions for concavity seem to be more

restrictive than their counterparts for convexity.
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