NATALIA LAZZATI

MATHEMATICS FOR ECONOMICS

NoTE 3: THE IMPLICIT FUNCTION THEOREM

Note 3 is based on Apostol (1975, Ch. 13), de la Fuente (2000, Ch.5) and Simon and Blume
(1994, Ch. 15).

This note discusses the Implicit Function Theorem (IFT). This result plays a key role in
economics, particularly in constrained optimization problems and the analysis of comparative
statics. The first section develops the IFT for the simplest model of one equation and one

exogenous variable. We then extend the analysis to multiple equations and exogenous variables.

Implicit Function Theorem: One Equation

In general, we are accustom to work with functions of the form = = f () where the endogenous
variable x is an explicit function of the exogenous variable . This ideal situation does not always

occur in economic models. The IFT in its simplest form deals with an equation of the form
F(z;a) =0 (1)

where we separate endogenous and exogenous variables by a semicolon.
The problem is to decide whether this equation determines = as a function of «. If so, we have
x = z («) for some function z (.), and we say z (.) is defined "implicitly" by (1). Formally, we are

interested in two questions

(a) Under which conditions on (1) is z determined as a function of a?; and

(b) How do changes in « affect the corresponding value of z?

The IFT answers these two questions simultaneously!
The idea behind this fundamental theorem is quite simple. If F' (z; «) is a linear function, then
the answer to the previous questions is trivial—we elaborate on this point below. If F'(z;«) is

nonlinear, then the IFT states a set of conditions under which we can use derivatives to construct



a linear system that behaves closely to the nonlinear equation around some initial point. We
can then address the local behavior of the nonlinear system by studying the properties of the
associated linear one. So the results of Notes 1 and 2 turn out to be important here!

Before introducing the IFT let us develop a few examples that clarify the requirements of the

theorem and its main implications.

Example 1. Let us consider the function F' (z;«) = ax — ba — ¢. Here the values that satisfy
F (z;) = 0 form a linear equation axz — ba — ¢ = 0. Moreover, assuming a # 0, the values of

and « that satisfy F' (z;a) = 0 can be expressed as

b c
z (o) = o + =
If a # 0, then z («) is a continuous function of @ and dx («) /da = b/a.
Notice that the partial derivative of F' (z; ) with respect to = is OF (z; ) /Ox = a. So in this

simple case, = («) exists and is differentiable if and only if OF (z; ) /Ox # 0. A

In Example 1, assuming 0F (z; ) /Ox # 0, = (a) is defined for every initial value of x and «.

In the next example, x («) exists only around some specific values of these two variables.

Example 2. Let F (z;a) = 22 + a? — 1, so that the values of  and « that satisfy F (z;a) =0
form a circle of radius 1 and center (0,0) in R2.

In this case, for each @ € (—1,1) we have two possible values of = that satisfy F (z;«a) =
2?2 +a? — 1 = 0. [Therefore, z (a) is not a function.] Note, however, that if we restrict = to
positive values, then we will have the upper half of the circle only, and that does constitute a
function, namely, = (a) = +v1 — a2,

Similarly, if we restrict « to negative values, then we will have the lower half of the circle only,
and that does constitute a function as well, namely, z (o) = —v/1 — 2.

Here for all x > 0 we have that OF (z;a) /O0x = 2z > 0; and for all z < 0 we have that
OF (z; ) /0x = 22 < 0. Then the condition OF (z;a) /O0x # 0 plays again an important role in

the existence and differentiability of z («). A

The last two examples suggest that OF (z;«) /Ox # 0 is a key ingredient for = («) to exist, and

that in some cases x («) exists only around some initial values of = and/or . The next example



proceeds in a different way, it assumes z () exists and studies the behavior of this function with

respects to a.
Example 3. Consider the cubic implicit function
F(zia)=23+a®> —3az - 7=0 (2)

around the point z = 3 and o = 4. Suppose that we could find a function z = z («) that solves

(2) around the previous point. Plugging this function in (2) we get
[z (@)]* + a? — 3az (a) — 7 = 0. (3)

Differentiating this expression with respect to « (by using the Chain Rule) we obtain

3u@m2%am+aa—&xm—3%%@m:o (@)
Therefore
dx 1
— () = 3z (a) — 20 (5)
dex 3{[3: (a)]Q—a}
At £ =3 and a = 4 we find
dx 1
do (a) = 15 (6)

Notice that (5) exists if [ ()]* — a # 0. Since OF (z; ) 0z = 3 (z* — @), the required condition
is again OF (z,a) /Ox # 0 at the point of interest. A

Let us extend Example 3 to a general implicit function F' (z;a) = 0 around an initial point
(z*,a*) . To this end suppose there is a C! (continuously differentiable) solution # = z () to the
equation F'(z; ) = 0, that is,

Flz(a);a] =0. (7)

We can use the Chain Rule to differentiate (7) with respect to « at a* to obtain

OF da | OF dz

(e L+ ol (a%) 0] 5 (a7) = 0.

Solving for dx/da we get

de . OF. . o OF . .,
T (@) = 5 fa(0);0") /5 [ () ;0"). (8)



The last expression shows that if the solution z (a) to F (z;a) = 0 exists and is continuously
differentiable, then we need OF (z;a) /0x # 0 at [z (a*); o] to recover dx/da at a*. The IFT

states that this necessary condition is also a sufficient condition!

Theorem 1. (Implicit Function Theorem) Let F (x;a) be a C! function on a ball about

(z*,a*) in R2. Suppose that F (z*;a*) = 0 and consider the expression
F(z;a) = 0.

If OF (z*;a*) /Ox # 0, then there exists a C! function z = z («) defined on an open interval I

about the point a* such that:
(a) Flz(a);a] =0 for all o in I;

(b) x (a*) = z*; and

(c) ;% (a*) = —gfi [z (a") ;] gi [z () ;2]

Proof. See de la Fuente (2000), pp. 207-210. =

The next example applies the IFT to the standard model of firm behavior in microeconomics.
In ECON 501A we will study a general version of this problem. Although in the next example
the endogenous variable can in fact be explicitly solved in terms of the exogenous ones, we will
use the IFT to state how changes in the latter affect the former. In this way we can corroborate

the predictions of the IFT hold.

Example 4. (Comparative Statics I) Let us consider a firm that produces a good y by
using a single input z. The firm sells the output and acquires the input in competitive markets.
The market price of y is p, and the cost of each unit of = is just w. Its technology is given by

f Ry — Ry, where f(z) =2 and a € (0,1). Its profits are given by
(@9, ) = pa® — w. (9)

The firm selects the input level, x, in order to maximize profits. We would like to know how its

choice of x is affected by a change in w.



Assuming an interior solution, the first-order condition of this optimization problem is

0 _
?Z(x*;p,w) = pa (z*)" ' —w=0 (10)
for some x = z*. (Check that the second order condition holds.)

Notice that here

F (z;p,w) = pa (z*)*" —w. (11)
Since OF (2*; p,w) /0x = pa (a — 1) (z*)* "2 < 0, we can use the IFT to get

dx or ., or ., . -1
%(pvw)__%[x ap7w]/%[$ ’p7w]_ pa(a—l) (x*)a—Z <0. (12)

We conclude that if the price of the input increases, then the firm will acquire less of it. That
is, the unconditional input demand is decreasing in the input price. [Confirm this result by

finding an explicit expression for z* in (9) and differentiating it with respect to w.] A

The next sub-section extends the previous ideas to a model that involves a systems of equations

and many parameters.

Implicit Function Theorem: System of Equations

The general problem involves a system of several equations and variables. Some of the variables
are endogenous, and the other ones are exogenous. The question of interest is under what
conditions we can solve these equations for the endogenous variables in terms of the remaining
variables (or parameters). The IFT describes these conditions and some conclusions about the
effect of the exogenous variables on the endogenous ones. To motivate the requirements of the

theorem, we start again with a linear example.

Example 5. Consider a linear system of two equations

ar; +bxy —a; =0 a b x o
1 2 — Q1 or L L (13)
cr1+drg —as =0 c d To a9
In Note 1 we showed that the linear system (13) has a unique solution for (xy, z2) if the determi-

nant of the coefficient matrix is different from 0, i.e. ad — ¢b # 0. If this condition holds, we can



use Crammer’s rule to state

. ai b a b a1d — agb
x1 = x1(a1,a9) with 21 (aq,a9) = / = ﬁ
oy d c d aa —¢
. a aq a b a — co
xe = x9(a1,a) with zg (aq, ) = / = 7{21 bl
c oo c d aag —c¢

Then if ad — ¢b # 0 we can find a pair of functions z; (a1, ag) and z2 (o, a2) that simultaneously
solve (13) for all possible values of the exogenous variables a; and ag. Moreover, these two

functions are C! and we can differentiate, for instance, z1 (a1, i) with respect to aa to obtain

8.%‘1 (011, 012) _ —-b
Oay ad—cb’

The Jacobian matrix of the left-hand side of system (13) with respect to (x1,z2) is

a b
c d

(14)

The determinant of (14) is ad—cb. Therefore, we conclude that the system of equations (13) defines
x1 (a1, ) and zg (a1, a2) as continuous functions of the exogenous variables if the determinant
of its Jacobian matrix is different from zero. In the general IFT, the nonvanishing condition
of the determinant of the Jacobian matrix also plays a fundamental role. This comes about by

approximating a system of nonlinear equations by linear ones! A

To extend Example 5 to a nonlinear system, let us write the basic system of equations as

Fy (;Ula"'awn;@b“'aam) =0 (15)

Fo (21, zpjar, ) = 0

where (21, ...,x,) is the vector of endogenous variables and (ay, ..., a,,) are the exogenous ones.

Suppose there are n C' functions in a neighborhood of (z%, ..., z%; af, ..., o)
1 = x1(Q1,y .y i)
Tpn = Zp(Q1,...;0y)



that solve the system of equations (15). Then

Fi[z1 (a1, ey ) s ooy Ty (@ oy i) 5 Q14 ey ty] = 0 (16)

Fyx1 (a1, ey @) ooy Ty (Q1y ooy i) 50014 ooy ] = 0.

We can use the Chain Rule to differentiate (16) with respect to ay, at (of, ..., o) to get

0F 0x1 oF) Oz, OF

— = 4 .. = 1
Ox1 Oay, oz, Doy, Oay, 0 (a7)
OF, dx1 OF, 0z, OF, 0

Oxy Oy, Oxp 0oy, Oay,

where all the partial derivatives are evaluated at (z7, ..., z}; o, ..., o). This system of equations

can be rewritten as

oF; o oz, OF}
o1 OTn day, oay,
=—| : (18)
OFy OFy Ozp OFy,
o1 OTn day, oay,

where the n x n matrix of the left-hand side is the Jacobian of (16) with respect to (z1,...,2x)
evaluated at (z7,...,x}; a7, ...,a),).

Solving for (0z1/0ap, ..., 0xy/Jay) we obtain

Oz o oF or
dap, oy o Ozg day,
=— T : . (19)
Oz OFy OFy OFy
dap, ory o Ozg dayp,
We see from (19) that if the solution [z1 (a1, ..., Q) 4 .oy T, (@1, .., iy )] tO the system of equations

(15) exists and is differentiable, then (0z1/dap, ..., 0z, /0ay) exists if the determinant of the
af,...,ar). (Why?) The IFT shows again

Jacobian of (15) is different from zero at (z7,...,x .

* .
n’

that this necessary condition is also a sufficient condition!

Theorem 2. (Implicit Function Theorem) Let Fy,...,F;, : R®™™™ — R be C! functions.



Consider the system of equations

Fy (mla"'a$n;a1,"'vam) =0 (20)

Fo (1, .y @pjar, ) = 0

as possibly defining 1, ..., z,, as implicit functions of a1, ..., ap,. Suppose that (273, ..., x}; a5, ..., af,)

is a solution of (20). If the determinant of the n x n Jacobian matrix

oF oF
o1 OTn
DyF = : :
OFy, Oy,
o1 OTn
evaluated at (x%,...,2%;af, ..., af,) is non-zero, then there exist C! functions
r1 = X1 (al,...,am)
Ty = Tp(aq,.., )
defined on an open ball B around (o, ..., a};,) such that
Filzg (0, ey n) ooy T (1 ooy ) 5000, ey ] = 0 (21)
Folz1 (a1, ey @) s ooy T (1 ey i) 5 Q14 oy i) = 0
for all (av, ..., apy,) in B and
* * *
7 = z(o], .. 0p)
* * *
xy = xp(af,.,ar).
Furthermore, we can calculate % (of,...,ak), .., ngz (aF,...,ar,) as in (19), or solve for one

particular element of this vector by using Crammer’s rule.

Proof. See de la Fuente (2000), pp. 211-212. =



SB, pp. 360-364, provide an interesting application. We offer a simpler one that extends

Example 4 to a firm problem with two inputs.

Example 6. (Comparative Statics IT) Let us consider again a firm that produces a good v,
but now let us assume it uses two inputs x1 and zs. The firm sells the output and acquires the
inputs in competitive markets. The market price of y is p, and the cost of each unit of 1 and z9
is just wy and wy respectively. Its technology is given by f : Ri — Ry, where f (z1,22) = a:clba:g,

a + b < 1. Its profits take the form
7 (21, T2; P, w1, wa) = pff@“g — w1r1 — W2k2. (22)

The firm selects 1 and x9 in order to maximize profits. We aim to know how its choice of
x1 is affected by a change in w;. Notice that now w; affects the choice of x1 not only in a
direct way (as in Example 4) but also indirectly through its effect on the other variable of choice,
2.

Assuming an interior solution, the first-order conditions of this optimization problem are

s - *

(@ asp ) = palad) ! @) - wr =0 (23)
1
™ * % x\a ¢ x\b—1

783:2 (21,25 p, w1, we) = pb(x])" (v3) —wz =0

for some (x1,22) = (27, 25). (As we will study later, the second order conditions hold here by
the strict concavity of the production function.)

Let us define
Fy (2%, 23 p,wi, wy) = pa(zh) 7 (23)" —w (24)
Fy (23,73 p,wi,w2) = pb(x})® (23)"" — wa.

To achieve our goal we need to differentiate the system of equations (24) with respect to w;

*\a— * Ox] *\a— *\b— o’
pa (a — 1) (z7) ? (372)b Biwll + pab (z7) ! (xz)b ! 8w21 -1 =0 (25)
*\a— *\b— O] *\Q *\b— x5
pab (x7) ! (%)b ! 871011 +pb(b—1) (x7) ($2)b 2 8w21 -0 = 0

The Jacobian matrix of F = (Fy, F5)” with respect to x at x* is

pa(a—1)(21)* 2 (23)"  pab(a})® ' (z5)""

DXF (xT’x;) - * a—1 * b—]. *\ QA * b—2
pab (x7) (23) pb(b—1) (z7)" (z3)



Notice that in this case DyF (2%, 2%; p, w1, w2) = pD2f (x%,23). That is, the Jacobian of F with
respect to (x1,x2) is the market price times the Hessian of the production function. A similar
structure appears in many other models of microeconomics.

Combining (25) and (26), and rearranging terms, we get

*\a— * *\a— *)\ 9 Oz}
paa—1) ()" (@3)"  pab(e}) (a3)" oo | _ (1 (27)
*\G— *\b— *) A (x0T O3 a '
pab ()" (@35)" pb(b— 1) (2])" (5)" T 0

The requirement of the IFT is satisfied if the determinant of (26) is non-zero. (Check that this

condition holds.) By the IFT and Crammer’s rule we get

1 pab(x})™ " (z3)"
. 0 pb(b—1)(})" (x3)"
Dwr (p, w1, wz) = U — -~ < 0.
! pa(a—1) (1) " (z3)"  pab(z})* " (23)

pab (z)* " (z3)"" pb(b—1) (@}) (z3)"

We conclude that if the price of input 1 increases, then the firm will acquire less of it. [Confirm
this result by finding an explicit expression for z] and z3% in (23) and differentiating

x} with respect to wi.] A
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